Robust Control Toolbox ${ }^{\text {M }}$

User's Guide

Gary Balas
Richard Chiang
Andy Packard
Michael Safonov

MATLAB ${ }^{\circ}$

How to Contact MathWorks

Latest news:
www.mathworks.com
Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral
Technical support: www.mathworks.com/support/contact_us
Phone:
508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Robust Control Toolbox ${ }^{\text {TM }}$ User's Guide

© COPYRIGHT 2005-2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

September 2005	First printing	New for Version 3.0.2 (Release 14SP3)
March 2006	Online only	Revised for Version 3.1 (Release 2006a)
September 2006	Online only	Revised for Version 3.1.1 (Release 2006b)
March 2007	Online only	Revised for Version 3.2 (Release 2007a)
September 2007	Online only	Revised for Version 3.3 (Release 2007b)
March 2008	Online only	Revised for Version 3.3.1 (Release 2008a)
October 2008	Online only	Revised for Version 3.3.2 (Release 2008b)
March 2009	Online only	Revised for Version 3.3.3 (Release 2009a)
September 2009	Online only	Revised for Version 3.4 (Release 2009b)
March 2010	Online only	Revised for Version 3.4.1 (Release 2010a)
September 2010	Online only	Revised for Version 3.5 (Release 2010b)
April 2011	Online only	Revised for Version 3.6 (Release 2011a)
September 2011	Online only	Revised for Version 4.0 (Release 2011b)
March 2012	Online only	Revised for Version 4.1 (Release 2012a)
September 2012	Online only	Revised for Version 4.2 (Release 2012b)
March 2013	Online only	Revised for Version 4.3 (Release 2013a)
September 2013	Online only	Online only
March 2014	Revised for Version 5.0 (Release 2013b)	
October 2014	Online only	Revised for Version 5.1 (Release 2014a)
March 2015	Online only	Revised for Version 5.2 (Release 2014b)
September 2015	Online only	Revised for Version 5.3 (Release 2015a)
March 2016	Online only	Revised for Version 6.0 (Release 2015b)
September 2016	Online only	Revised for Version 6.1 (Release 2016a)
March 2017	Online only	Revised for Version 6.2 (Release 2016b)

Building Uncertain Models

Introduction to Uncertain Elements 1-2
Uncertain Real Parameters 1-4
Properties of Uncertain Real Parameters 1-4
Create Uncertain Real Parameters 1-5
Uncertain LTI Dynamics Elements 1-12
Create Uncertain LTI Dynamics 1-12
Properties of ultidyn Elements 1-13
Time Domain of ultidyn Elements 1-14
Interpreting Uncertainty in Discrete Time 1-15
Uncertain Complex Parameters and Matrices 1-17
Uncertain Complex Parameters 1-17
Uncertain Complex Matrices 1-18
Systems with Unmodeled Dynamics 1-22
Uncertain Matrices 1-23
Create and Manipulate Uncertain Matrices 1-24
Evaluate Uncertain Elements by Substitution 1-30
Uncertain State-Space Models 1-32
Create Uncertain State-Space (uss) Model 1-32
Properties of uss Objects 1-33
Lifting a ss to a uss 1-36
Sample Uncertain Systems 1-37
Uncertain Model Interconnections 1-39
Feedback Around an Uncertain Plant 1-39
Basic Model Interconnections 1-40
Create Uncertain Frequency Response Data Models 1-42
Properties of ufrd Objects 1-43
Lifting an frd to a ufrd 1-44
Simplifying Representation of Uncertain Objects 1-46
Effect of the Autosimplify Property 1-47
Direct Use of simplify 1-49
Generate Samples of Uncertain Systems 1-50
Generating One Sample 1-50
Generating Many Samples 1-50
Sampling ultidyn Elements 1-51
Substitution by usubs 1-54
Specifying the Substitution with Structures 1-55
Nominal and Random Values 1-55
Array Management for Uncertain Objects 1-57
Reference Into Arrays 1-57
Create Arrays with stack and cat Functions 1-59
Create Arrays by Assignment 1-61
Binary Operations with Arrays 1-62
Sample Uncertain Elements to Create Arrays 1-63
Substitute Uncertain Elements to Create Arrays 1-66
Create Arrays with gridureal 1-67
Create Arrays with repmat 1-68
Create Arrays with repsys 1-69
Using permute and ipermute 1-70
Decomposing Uncertain Objects 1-71
Normalizing Functions for Uncertain Elements 1-71
Properties of the Decomposition 1-72
Decompose Uncertain Model Using lftdata 1-73
Advanced Syntax of lftdata 1-76
Generalized Robustness Analysis
2
Robustness and Worst-Case Analysis 2-2
Robustness Analysis 2-2
Worst-Case Gain Measure 2-5
Robust Stability, Robust Performance and Mu Analysis 2-7
Getting Reliable Estimates of Robustness Margins 2-17
Introduction to Linear Matrix Inequalities
3
Linear Matrix Inequalities 3-2
LMI Features 3-2
LMIs and LMI Problems 3-4
LMI Applications 3-6
Stability 3-7
RMS Gain 3-8
LQG Performance 3-8
Further Mathematical Background 3-10
Bibliography 3-11
Tools for Specifying and Solving LMIs 4-2
Some Terminology 4-2
Overview of the LMI Lab 4-5
Specifying a System of LMIs 4-7
Specify LMI System at the Command Line 4-9
Specify LMI System 4-9
Initializing the LMI System 4-11
Specifying the LMI Variables 4-11
Specifying Individual LMIs 4-13
Specify LMIs with the LMI Editor GUI 4-17
Keyboard Shortcuts 4-19
Limitations 4-19
How lmivar and lmiterm Manage LMI Representation 4-21
Querying the LMI System Description 4-22
lmiinfo 4-22
lminbr and matnbr 4-22
LMI Solvers 4-23
Minimize Linear Objectives under LMI Constraints 4-25
Conversion Between Decision and Matrix Variables 4-29
Validating Results 4-30
Modify a System of LMIs 4-31
Deleting an LMI 4-31
Deleting a Matrix Variable 4-31
Instantiating a Matrix Variable 4-32
Advanced LMI Techniques 4-34
Structured Matrix Variables 4-34
Complex-Valued LMIs 4-37
Specifying c ${ }^{T}$ x Objectives for mincx 4-39
Feasibility Radius 4-41
Well-Posedness Issues 4-41
Semi-Definite B(x) in gevp Problems 4-42
Efficiency and Complexity Issues 4-43
Solving $\mathrm{M}+\mathrm{P}^{\mathrm{T}} \mathrm{XQ}+\mathrm{Q}^{\mathrm{T}} \mathrm{X}^{\mathrm{T}} \mathrm{P}<0$ 4-44
Bibliography 4-45
Analyzing Uncertainty Effects in Simulink
5
Analyzing Uncertainty in Simulink 5-2
Simulink Blocks for Analyzing Uncertainty 5-2
Specify Uncertainty Using Uncertain State Space Blocks 5-4
How to Specify Uncertainty in Uncertain State Space Blocks 5-4
Next Steps 5-6
Simulate Uncertainty Effects 5-7
How to Simulate Effects of Uncertainty 5-7
How to Vary Uncertainty Values 5-7
Vary Uncertainty Values Using Individual Uncertain State Space Blocks 5-8
Vary Uncertainty Values Across Multiple Uncertain State Space Blocks 5-15
Compute Uncertain State-Space Models from Simulink Models 5-20
Obtain Uncertain State-Space Model from Simulink Model 5-20
Specify Uncertain Linearization for Core or Custom Simulink Blocks 5-21
Using Uncertain Linearization for Analysis or Control Design 5-24
Linearize Block to Uncertain Model 5-25
Analyzing Stability Margin of Simulink Models 5-31
How Stability Margin Analysis Using Loopmargin Differs Between Simulink and LTI Models 5-31
Stability Margin of Simulink Model 5-31
Stability Margin of a Simulink Model 5-33

Building Uncertain Models

- "Introduction to Uncertain Elements" on page 1-2
- "Uncertain Real Parameters" on page 1-4
- "Uncertain LTI Dynamics Elements" on page 1-12
- "Uncertain Complex Parameters and Matrices" on page 1-17
- "Systems with Unmodeled Dynamics" on page 1-22
- "Uncertain Matrices" on page 1-23
- "Evaluate Uncertain Elements by Substitution" on page 1-30
- "Uncertain State-Space Models" on page 1-32
- "Sample Uncertain Systems" on page 1-37
- "Uncertain Model Interconnections" on page 1-39
- "Create Uncertain Frequency Response Data Models" on page 1-42
- "Simplifying Representation of Uncertain Objects" on page 1-46
- "Generate Samples of Uncertain Systems" on page 1-50
- "Substitution by usubs" on page 1-54
- "Array Management for Uncertain Objects" on page 1-57
- "Create Arrays with stack and cat Functions" on page 1-59
- "Create Arrays by Assignment" on page 1-61
- "Binary Operations with Arrays" on page 1-62
- "Sample Uncertain Elements to Create Arrays" on page 1-63
- "Substitute Uncertain Elements to Create Arrays" on page 1-66
- "Create Arrays with gridureal" on page 1-67
- "Create Arrays with repmat" on page 1-68
- "Create Arrays with repsys" on page 1-69
- "Using permute and ipermute" on page 1-70
- "Decomposing Uncertain Objects" on page 1-71

Introduction to Uncertain Elements

Uncertain elements (also called uncertain Control Design Blocks (Control System Toolbox)) are the building blocks used to form uncertain matrix objects and uncertain system objects. There are 5 types of uncertain elements:

Function	Description
ureal	Uncertain real parameter
ultidyn	Uncertain, linear, time-invariant dynamics
ucomplex	Uncertain complex parameter
ucomplexm	Uncertain complex matrix
udyn	Uncertain dynamic system

All of the elements have properties, which are accessed through get and set methods. This get and set interface mimics the Control System Toolbox ${ }^{\mathrm{TM}}$ and MATLAB ${ }^{\circledR}$ Handle Graphics ${ }^{\circledR}$ behavior. For instance, get (a, 'PropertyName ') is the same as a.PropertyName, and set(b, 'PropertyName', Value) is the same as b.PropertyName $=$ value. Functionality also includes tab-completion and caseinsensitive, partial name property matching.

For ureal, ucomplex and ucomplexm elements, the syntax is

```
p1 = ureal(name, NominalValue, Prop1, val1, Prop2, val2,...);
p2 = ucomplex(name, NominalValue, Prop1, val1, Prop2, val2,...);
p3 = ucomplexm(name, NominalValue, Prop1, val1, Prop2, val2,...);
```

For ultidyn and udyn, the NominalValue is fixed, so the syntax is

```
p4 = ultidyn(name, ioSize, Prop1, val1, Prop2, val2,...);
p5 = udyn(name, ioSize, Prop1, val1, Prop2, val2,...);
```

For ureal, ultidyn, ucomplex and ucomplexm elements, the command usample will generate a random instance (i.e., not uncertain) of the element, within its modeled range. For example,

```
usample(p1)
```

creates a random instance of the uncertain real parameter p 1 . With an integer argument, whole arrays of instances can be created. For instance

usample(p4,100)

generates an array of 100 instances of the ultidyn object p4. See "Generate Samples of Uncertain Systems" on page 1-50 to learn more about usample.

Related Examples

- "Uncertain Real Parameters" on page 1-4
- "Uncertain Matrices" on page 1-23
- "Uncertain LTI Dynamics Elements" on page 1-12

Uncertain Real Parameters

An uncertain real parameter, ureal, is the Control Design Block (Control System Toolbox) that represents a real number whose value is uncertain.

Properties of Uncertain Real Parameters

Uncertain real parameters have a name (the Name property), and a nominal value (the NominalValue property). Several other properties (PlusMinus, Range, Percentage) describe the uncertainty in parameter values.

All properties of a ureal can be accessed through get and set. The properties are:

Properties	Meaning	Class	
Name	Internal name	char	
NominalValue	Nominal value of element	double	
Mode	Signifies which description (from 'PlusMinus ', 'Range ', 'Percentage') of uncertainty is invariant when NominalValue is changed	char	
PlusMinus	Additive variation	scalar or 1x2 double	
Range	Numerical range	1x2 double	
Percentage	Additive variation (\% of absolute value of nominal)	scalar or 1x2 double	
AutoSimplify	'off' \| \{'basic '\}	'full'	char

The properties Range, Percentage and PlusMinus are all automatically synchronized. If the nominal value is 0 , then the Mode cannot be Percentage. The Mode property controls what aspect of the uncertainty remains unchanged when NominalValue is changed. Assigning to any of Range/Percentage/PlusMinus changes the value, but does not change the mode.

The AutoSimplify property controls how expressions involving the real parameter are simplified. Its default value is 'basic', which means elementary methods of simplification are applied as operations are completed. Other values for AutoSimplify are 'off' (no simplification performed) and 'full' (model-reduction-like techniques
are applied). See "Simplifying Representation of Uncertain Objects" on page 1-46 to learn more about the AutoSimplify property and the command simplify.

If no property/value pairs are specified, default values are used. The default Mode is PlusMinus, and the default value of PlusMinus is [$\left.\begin{array}{cc}-1 & 1\end{array}\right]$. Some examples are shown below. In many cases, the full property name is not specified, taking advantage of the case-insensitive, partial name property matching.

Create Uncertain Real Parameters

This example shows how to create uncertain real parameters, modify properties such as range of uncertainty, and sample uncertain parameters.

Create an uncertain real parameter, nominal value 3, with default values for all unspecified properties (including plus/minus variability of 1).

```
a = ureal('a',3)
a =
    Uncertain real parameter "a" with nominal value 3 and variability [-1,1].
```

View the properties and their values, and note that the Range and Percentage descriptions of variability are automatically maintained.

```
get(a)
    NominalValue: 3
                Mode: 'PlusMinus'
                Range: [2 4]
        PlusMinus: [-1 1]
        Percentage: [-33.3333 33.3333]
AutoSimplify: 'basic'
        Name: 'a'
```

Create an uncertain real parameter, nominal value 2, with 20% variability. Again, view the properties, and note that the Range and PlusMinus descriptions of variability are automatically maintained.

```
b = ureal('b',2,'Percentage',20)
```

```
get(b)
b =
    Uncertain real parameter "b" with nominal value 2 and variability [-20,20]%.
    NominalValue: 2
            Mode: 'Percentage'
            Range: [1.6000 2.4000]
            PlusMinus: [-0.4000 0.4000]
            Percentage: [-20 20]
AutoSimplify: 'basic'
    Name: 'b'
```

Change the range of the parameter. All descriptions of variability are automatically updated, while the nominal value remains fixed. Although the change in variability was accomplished by specifying the Range, the Mode is unaffected, and remains Percentage.

```
b.Range = [1.9 2.3];
get(b)
NominalValue: 2
            Mode: 'Percentage'
            Range: [1.9000 2.3000]
        PlusMinus: [-0.1000 0.3000]
        Percentage: [-5.0000 15.0000]
AutoSimplify: 'basic'
    Name: 'b'
```

As mentioned, the Mode property signifies what aspect of the uncertainty remains unchanged when NominalValue is modified. Hence, if a real parameter is in Percentage mode, then the Range and PlusMinus properties are determined from the Percentage property and NominalValue. Changing NominalValue preserves the Percentage property, and automatically updates the Range and PlusMinus properties.

```
b.NominalValue = 2.2;
get(b)
```

NominalValue: 2.2000
Mode: 'Percentage'
Range: [2.0900 2.5300]

```
    PlusMinus: [-0.1100 0.3300]
    Percentage: [-5.0000 15.0000]
AutoSimplify: 'basic'
    Name: 'b'
```

Create an uncertain parameter with an asymmetric variation about its nominal value. Examine the properties to confirm the asymmetric range.

```
c = ureal('c',-5,'Percentage',[-20 30]);
get(c)
NominalValue: -5
            Mode: 'Percentage'
            Range: [-6 -3.5000]
        PlusMinus: [-1 1.5000]
        Percentage: [-20 30]
AutoSimplify: 'basic'
    Name: 'c'
```

Create an uncertain parameter, specifying variability with Percentage, but force the Mode to be Range.

```
d = ureal('d',-1,'Mode','Range','Percentage',[-40 60]);
get(d)
NominalValue: -1
            Mode: 'Range
            Range: [-1.4000 -0.4000]
        PlusMinus: [-0.4000 0.6000]
        Percentage: [-40 60]
AutoSimplify: 'basic'
        Name: 'd'
```

Finally, create an uncertain real parameter, and set the AutoSimplify property to 'full'.
e = ureal('e',10,'PlusMinus',[-23],'Mode','Percentage','AutoSimplify','Full')
get(e)
e =

```
Uncertain real parameter "e" with nominal value 10 and variability [-230,230]%.
NominalValue: 10
            Mode: 'Percentage'
            Range: [-13 33]
        PlusMinus: [-23 23]
        Percentage: [-230 230]
AutoSimplify: 'full'
    Name: 'e'
```

Specifying conflicting values for Range/Percentage/PlusMinus when creating a ureal element does not result in an error. In this case, the last specified property is used. This last occurrence also determines the Mode, unless Mode is explicitly specified, in which case that is used, regardless of the property/value pairs ordering.

```
f = ureal('f',3,'PlusMinus',[-2 1],'Percentage',40)
g = ureal('g',2,'PlusMinus',[-2 1],'Mode','Range','Percentage',40)
g.Mode
f =
```

 Uncertain real parameter "f" with nominal value 3 and variability [-40,40]\%.
 $\mathrm{g}=$
Uncertain real parameter "g" with nominal value 2 and range [1.2,2.8].
ans $=$
'Range '

Create an uncertain real parameter, use usample to generate 1000 instances (resulting in a 1-by-1-by-1000 array), reshape the array, and plot a histogram, with 20 bins (within the range of 2 to 4).

```
h = ureal('h',3);
hsample = usample(h, 1000);
hist(reshape(hsample,[1000 1]),20);
```


Make the range unsymmetric about the nominal value, and repeat the sampling, and histogram plot (with 40 bins over the range of 2 -to- 6)

```
h.Range = [2 6];
hsample = usample(h,1000);
hist(reshape(hsample,[1000 1]),40);
```


Note that the distribution is skewed. However, the number of samples less than the nominal value and the number of samples greater than the nominal value are equal (on average). Verify this.
length(find(hsample(:) < h.NominalValue))

```
ans =
    4 8 2
length(find(hsample(:) > h.NominalValue))
```

The distribution used in usample is uniform in the normalized description of the uncertain real parameter. See "Decomposing Uncertain Objects" to learn more about the normalized description.

There is no notion of an empty ureal (or any other uncertain element, for that matter). ureal, by itself, creates an element named 'UNNAMED', with default property values.

See Also

ureal

Related Examples

- "System with Uncertain Parameters"
- "Uncertain LTI Dynamics Elements" on page 1-12

Uncertain LTI Dynamics Elements

Uncertain linear, time-invariant objects, ultidyn, are used to represent unknown linear, time-invariant dynamic objects, whose only known attributes are bounds on their frequency response.

Create Uncertain LTI Dynamics

You can create a 1-by-1 (scalar) positive-real uncertain linear dynamics element, whose frequency response always has real part greater than -0.5. Set the SampleStateDimension property to 5. Plot a Nyquist plot of 30 instances of the element.

```
g = ultidyn('g',[1 1],'Type','Positivereal','Bound',-0.5);
g.SampleStateDimension = 5;
```

nyquist(usample(g,30))
$x \lim \left(\left[\begin{array}{ll}-2 & 10\end{array}\right]\right)$
ylim([-6 6]);

Properties of ultidyn Elements

Uncertain linear, time-invariant objects have an internal name (the Name property), and are created by specifying their size (number of outputs and number of inputs).

The property Type specifies whether the known attributes about the frequency response are related to gain or phase. The property Type may be 'GainBounded ' or 'PositiveReal'. The default value is 'GainBounded'.

The property Bound is a single number, which along with Type, completely specifies what is known about the uncertain frequency response. Specifically, if Δ is an ultidyn element, and if Y denotes the value of the Bound property, then the element represents
the set of all stable, linear, time-invariant systems whose frequency response satisfies certain conditions:

If Type is 'GainBounded ', $\dot{\bar{\sigma}}[\Delta(\omega)] \leq \gamma$ for all frequencies. When Type is 'GainBounded ', the default value for Bound (i.e., γ) is 1 . The NominalValue of Δ is always the 0 -matrix.

If Type is 'PositiveReal',$\Delta(\omega)+\Delta^{*}(\omega) \geq 2 \gamma$ for all frequencies. When Type is 'PositiveReal', the default value for Bound (i.e., Y) is 0 . The NominalValue is always $(\gamma+1+2|\gamma|) I$.

All properties of a ultidyn are can be accessed with get and set (although the NominalValue is determined from Type and Bound, and not accessible with set). The properties are

Properties	Meaning	Class	
Name	Internal Name	char	
NominalValue	Nominal value of element	See above	
Type	'GainBounded ' \| 'PositiveReal'	char	
Bound	Norm bound or minimum real	scalar double	
SampleStateDimen	State-space dimension of random samples of this uncertain element	scalar double	
SampleMaxFrequen	Maximum natural frequency for random sampling	scalar double	
AutoSimplify	'off' \| \{'basic '\}	'full'	char

The SampleStateDim property specifies the state dimension of random samples of the element when using usample. The default value is 1 . The AutoSimplify property serves the same function as in the uncertain real parameter.

Time Domain of ultidyn Elements

On its own, every ultidyn element is interpreted as a continuous-time, system with uncertain behavior, quantified by bounds (gain or real-part) on its frequency response. However, when a ultidyn element is an uncertain element of an uncertain state space model (uss), then the time-domain characteristic of the element is determined from the
time-domain characteristic of the system. The bounds (gain-bounded or positivity) apply to the frequency-response of the element. This is explained and demonstrated in .

Interpreting Uncertainty in Discrete Time

The interpretation of a ultidyn element as a continuous-time or discrete-time system depends on the nature of the uncertain system (uss) within which it is an uncertain element.

For example, create a scalar ultidyn object. Then, create two 1 -input, 1-output uss objects using the ultidyn object as their "D" matrix. In one case, create without specifying sample-time, which indicates continuous time. In the second case, force discrete-time, with a sample time of 0.42 .

```
delta = ultidyn('delta',[1 1]);
sys1 = uss([],[],[],delta)
USS: O States, 1 Output, 1 Input, Continuous System
    delta: 1x1 LTI, max. gain = 1, 1 occurrence
sys2 = uss([],[],[],delta,0.42)
USS: O States, 1 Output, 1 Input, Discrete System, Ts = 0.42
    delta: 1x1 LTI, max. gain = 1, 1 occurrence
```

Next, get a random sample of each system. When obtaining random samples using usample, the values of the elements used in the sample are returned in the 2 nd argument from usample as a structure.

```
[sys1s,d1v] = usample(sys1);
[sys2s,d2v] = usample(sys2);
```

Look at d1v.delta.Ts and d2v.delta.Ts. In the first case, since sys1 is continuoustime, the system d1v.delta is continuous-time. In the second case, since sys2 is discrete-time, with sample time 0.42 , the system d 2 v . delta is discrete-time, with sample time 0.42 .

```
d1v.delta.Ts
ans =
    O
d2v.delta.Ts
ans =
    0.4200
```

Finally, in the case of a discrete-time uss object, it is not the case that ultidyn objects are interpreted as continuous-time uncertainty in feedback with sampled-data systems. This very interesting hybrid theory is beyond the scope of the toolbox.

See Also

ultidyn

Related Examples

- "Uncertain Real Parameters" on page 1-4
- "Uncertain Matrices" on page 1-23
- "Uncertain State-Space Models" on page 1-32

Uncertain Complex Parameters and Matrices

Uncertain Complex Parameters

The ucomplex element is the Control Design Block (Control System Toolbox) that represents an uncertain complex number. The value of an uncertain complex number lies in a disc, centered at NominalValue, with radius specified by the Radius property of the ucomplex element. The size of the disc can also be specified by Percentage, which means the radius is derived from the absolute value of the NominalValue. The properties of ucomplex objects are

Properties	Meaning	Class
Name	Internal Name	char
NominalValue	Nominal value of element	double
Mode	'Range ' \| 'Percentage '	char
Radius	Radius of disk	double
Percentage	Additive variation (percent of Radius)	double
AutoSimplify	'off' \| \{ 'basic' \} ' full'	char

The simplest construction requires only a name and nominal value. Displaying the properties shows that the default Mode is Radius, and the default radius is 1.

```
a = ucomplex('a',2-j)
a =
get(a)
    NominalValue: 2.0000 - 1.0000i
            Mode: 'Radius'
            Radius: 1
        Percentage: 44.7214
        AutoSimplify: 'basic'
            Name: 'a'
```

 Uncertain complex parameter "a" with nominal value 2-1i and radius 1.
 Sample the uncertain complex parameter at 400 values, and plot in the complex plane. Clearly, the samples appear to be from a disc of radius 1, centered in the complex plane at the value $2-j$.

```
asample = usample(a,400);
plot(asample(:),'o');
xlim([-0.5 4.5]);
ylim([-3 1]);
```


Uncertain Complex Matrices

The uncertain complex matrix class, ucomplexm, represents the set of matrices given by the formula
$N+W_{L} \Delta W_{R}$
where N, W_{L}, and W_{R} are known matrices, and Δ is any complex matrix with $\dot{\bar{\sigma}}(\Delta) \leq 1$. All properties of a ucomplexm are can be accessed with get and set. The properties are

Properties	Meaning	Class
Name	Internal Name	char
NominalValue	Nominal value of element	double
WL	Left weight	double
WR	Right weight	double
AutoSimplify	'off' \| \{'basic ' \quad \| 'full'	char

Uncertain Complex Matrix and Weighting Matrices

Create a 4-by-3 uncertain complex matrix (ucomplexm), and view its properties. The simplest construction requires only a name and nominal value.

```
m = ucomplexm('m',[1 2 3; 4 5 6; 7 8 9; 10 11 12])
m =
get(m)
    NominalValue: [4*3 double]
            WL: [4\times4 double]
            WR: [3\times3 double]
    AutoSimplify: 'basic'
    Name: 'm'
```

 Uncertain complex matrix "m" with 4 rows and 3 columns.
 The nominal value is the matrix you supply to ucomplexm.

```
mnom = m.NominalValue
```

mnom $=$
123

4	5	6
7	8	9
10	11	12

By default, the weighting matrices are the identity. For example, examine the left weighting.
m.WL
ans =

1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1

Sample the uncertain matrix, and compare to the nominal value. Note the element-byelement sizes of the difference are roughly equal, indicative of the identity weighting matrices.

```
msamp = usample(m);
diff = abs(msamp-mnom)
diff =
\begin{tabular}{lll}
0.3309 & 0.0917 & 0.2881 \\
0.2421 & 0.3449 & 0.3917 \\
0.2855 & 0.2186 & 0.2915 \\
0.3260 & 0.2753 & 0.3816
\end{tabular}
```

Change the left and right weighting matrices, making the uncertainty larger as you move down the rows, and across the columns.

```
m.WL = diag([0.2 0.4 0.8 1.6]);
m.WR = diag([0.1 1 4]);
```

Sample the uncertain matrix again, and compare to the nominal value. Note the element-by-element sizes of the difference, and the general trend that the smallest differences are near the (1,1) element, and the largest differences are near the (4,3) element, consistent with the trend in the diagonal weighting matrices.

```
msamp = usample(m);
diff = abs(msamp-mnom)
diff =
\begin{tabular}{lll}
0.0048 & 0.0526 & 0.2735 \\
0.0154 & 0.1012 & 0.4898 \\
0.0288 & 0.3334 & 0.8555 \\
0.0201 & 0.4632 & 1.3783
\end{tabular}
```


See Also

ucomplex | ucomplexm

Systems with Unmodeled Dynamics

The unstructured uncertain dynamic system Control Design Block (Control System Toolbox), the udyn object, represents completely unknown multivariable, time-varying nonlinear systems.

For practical purposes, these uncertain elements represent noncommuting symbolic variables (placeholders). All algebraic operations, such as addition, subtraction, multiplication (i.e., cascade) operate properly, and substitution (with usubs) is allowed. However, all of the analysis tools (e.g., robstab) do not handle these types of uncertain elements.

You can create a 2-by-3 udyn element. Check its size, and properties.

```
m = udyn('m',[2 3])
m =
    Uncertain dynamics "m" with 2 outputs and 3 inputs.
get(m)
    NominalValue: [2x3 ss]
    AutoSimplify: 'basic'
                Ts: 0
            TimeUnit: 'seconds'
            InputName: {3\times1 cell}
            InputUnit: {3\times1 cell}
        InputGroup: [1\times1 struct]
        OutputName: {2x1 cell}
        OutputUnit: {2x1 cell}
        OutputGroup: [1x1 struct]
            Name: 'm'
            Notes: {}
            UserData: []
```


See Also

udyn

Related Examples

- "Uncertain LTI Dynamics Elements" on page 1-12

Uncertain Matrices

Uncertain matrices (class umat) are built from doubles and uncertain elements, using traditional MATLAB matrix building syntax. Uncertain matrices can be added, subtracted, multiplied, inverted, transposed, etc., resulting in uncertain matrices. The rows and columns of an uncertain matrix are referenced in the same manner that MATLAB references rows and columns of an array, using parenthesis, and integer indices. The NominalValue of a uncertain matrix is the result obtained when all uncertain elements are replaced with their own NominalValue. The uncertain elements making up a umat are accessible through the Uncertainty gateway, and the properties of each element within a umat can be changed directly. The properties are:

Properties	Meaning	Class
NominalValue	Nominal value of element	double
Uncertainty	Uncertain blocks in the matrix, stored as a structure whose fields are named after the uncertain blocks, and contain the uncertain elements, such as ureal.	struct
SamplingGrid	Sampling grid, for umat arrays, stored as a structure whose fields are named after the sampling variables, and contain the sample values associated with the corresponding model in the array.	struct
Name	umat name. When you convert a static control design block such as ureal to an uncertain matrix using umat (blk), the Name property of the block is preserved.	char

Using usubs, specific values may be substituted for any of the uncertain elements within a umat. The command usample generates a random sample of the uncertain matrix, substituting random samples (within their ranges) for each of the uncertain elements.

The command wcnorm computes tight bounds on the worst-case (maximum over the uncertain elements' ranges) norm of the uncertain matrix.

Standard MATLAB numerical matrices (i.e., double) naturally can be viewed as uncertain matrices without any uncertainty.

Create and Manipulate Uncertain Matrices

You create uncertain matrices (umat objects) by creating uncertain parameters and using them to build matrices. You can then use uncertain matrices to build uncertain statespace models. This example shows how to create an uncertain matrix, access and change its uncertain parameters, extract elements, and perform matrix arithmetic.

For example, create two uncertain real parameters, and use them to create a 3-by-2 uncertain matrix.

```
a = ureal('a',3);
b = ureal('b',10,'Percentage',20);
M = [-a, 1/b; b, a+1/b; 1, 3]
M =
```

 Uncertain matrix with 3 rows and 2 columns.
 The uncertainty consists of the following blocks:
 a: Uncertain real, nominal \(=3\), variability \(=[-1,1], 2\) occurrences
 b: Uncertain real, nominal \(=10\), variability \(=[-20,20] \%\), 3 occurrences
 Type "M.NominalValue" to see the nominal value, "get(M)" to see all properties, and "M

Examine and Modify umat Properties

M is a umat object. Examine its properties using get.
get (M)

```
    NominalValue: [3\times2 double]
    Uncertainty: [1\times1 struct]
    SamplingGrid: [1\times1 struct]
    Name:
```

The nominal value of M is the matrix obtained by replacing all the uncertain elements with their nominal values.
M.NominalValue
ans $=$

-3.0000	0.1000
10.0000	3.1000
1.0000	3.0000

The Uncertainty property is a structure containing the uncertain elements (the "Control Design Blocks" (Control System Toolbox)) of M.

```
M.Uncertainty
ans =
    struct with fields:
    a: [1\times1 ureal]
    b: [1\times1 ureal]
M.Uncertainty.a
ans =
    Uncertain real parameter "a" with nominal value 3 and variability [-1,1].
```

Use the Uncertainty property for direct access to the uncertain elements. For example, check the Range of the uncertain element a within M.
M.Uncertainty.a.Range
ans =

24

The range is [2,4] because you created the ureal parameter a with a nominal value 3 and the default uncertainty of $+/-1$. Change the range to $[2.5,5]$.
M.Uncertainty.a.Range = [2.5,5]

M =

```
Uncertain matrix with 3 rows and 2 columns.
The uncertainty consists of the following blocks:
    a: Uncertain real, nominal = 3, variability = [-0.5,2], 2 occurrences
    b: Uncertain real, nominal = 10, variability = [-20,20]%, 3 occurrences
```

Type "M.NominalValue" to see the nominal value, "get(M)" to see all properties, and "M

This change to a only takes place within M. Verify that the variable a in the MATLAB workspace still has the original range.

a.Range

ans =

24

You cannot combine elements that have a common internal name, but different properties. So, for example, entering M.Uncertainty.a - a would generate an error, because the realp parameter a in the workspace has different properties from the element a in M.

Row and Column Referencing

You can use standard row-column referencing to extract elements from a umat. For example, extract a 2 -by- 2 selection from M consisting of its second and third rows.

```
Msub = M(2:3,:)
Msub =
    Uncertain matrix with 2 rows and 2 columns.
    The uncertainty consists of the following blocks:
    a: Uncertain real, nominal = 3, variability = [-0.5,2], 1 occurrences
    b: Uncertain real, nominal = 10, variability = [-20,20]%, 2 occurrences
Type "Msub.NominalValue" to see the nominal value, "get(Msub)" to see all properties,
```

You can use single indexing only if the umat is a single column or row. Make a singlecolumn selection from M and use single-index references to access elements of it.

```
Msing = M([[2 1 2 3],2);
Msing(2)
ans =
    Uncertain matrix with 1 rows and 1 columns.
    The uncertainty consists of the following blocks:
        b: Uncertain real, nominal = 10, variability = [-20,20]%, 1 occurrences
Type "ans.NominalValue" to see the nominal value, "get(ans)" to see all properties, anc
```

You can use indexing to change the value of any element of a umat. For example, set the $(3,2)$ entry of M to an uncertain parameter c.

```
c = ureal('c',3,'Percentage',40);
M(3,2) = c
M =
```

 Uncertain matrix with 3 rows and 2 columns.
 The uncertainty consists of the following blocks:
 a: Uncertain real, nominal \(=3\), variability \(=[-0.5,2], 2\) occurrences
 b: Uncertain real, nominal \(=10\), variability \(=[-20,20] \%, 2\) occurrences
 c: Uncertain real, nominal \(=3\), variability \(=[-40,40] \%\), 1 occurrences
 Type "M.NominalValue" to see the nominal value, "get(M)" to see all properties, and "M

M now has three uncertain blocks.

Matrix Operations on umat Objects

You can perform many matrix operations on a umat object, such as matrix-multiply, transpose, and inverse. You can also combaine uncertain matrices with numeric matrices that do not have uncertainty.

For example, premultiply M by a 1 -by- 3 numeric matrix, resulting in a 1-by-2 umat.
M1 = [2 3 1 1]*M;
Verify that the first entry of M1 is as expected, $-2 * a+3 * b+1$.
d = M1(1) - (-2*M.Uncertainty.a + 3*M.Uncertainty.b + 1)

```
d =
```

 Uncertain matrix with 1 rows, 1 columns, and no uncertain blocks.
 Type "d.NominalValue" to see the nominal value, "get(d)" to see all properties, and "d

Transpose M, form a product, and invert it. As expected, the product of a matrix and its inverse is the identity matrix. You can verify this by sampling the result.

```
H = M.'*M;
K = inv(H);
usample(K*H,3)
ans(:,:,1) =
\begin{tabular}{rr}
1.0000 & 0.0000 \\
-0.0000 & 1.0000
\end{tabular}
ans(:,:,2) =
    1.0000 0.0000
    -0.0000 1.0000
ans(:,:,3) =
    1.0000 0.0000
    -0.0000 1.0000
```


Lifting a Double Matrix to umat

You can convert a numeric matrix to a umat object with no uncertain elements. Use the umat command to lift a double matrix to the umat class. For example:

```
Md = [1 2 3;4 5 6];
M = umat(Md)
M =
```

Uncertain matrix with 2 rows, 3 columns, and no uncertain blocks.

```
Type "M.NominalValue" to see the nominal value, "get(M)" to see all properties, and
```

You can also convert higher-dimension numeric matrices to umat. When you do so, the software interprets the third dimension and beyond as array dimensions. For example, convert a random three-dimensional numeric array to umat.

```
Md = randn(4,5,6);
M = umat(Md)
M =
    6x1 array of uncertain matrices with 4 rows, 5 columns, and no uncertain blocks.
Type "M.NominalValue" to see the nominal value, "get(M)" to see all properties, and
```

The result is a one-dimensional array of uncertain matrices, rather than a threedimensional uncertain array. Similarly, a four-dimensional numeric array converts to a two-dimensional array of umat objects.

```
Md = randn(4,5,6,7);
M = umat(Md)
M =
    6x7 array of uncertain matrices with 4 rows, 5 columns, and no uncertain blocks.
Type "M.NominalValue" to see the nominal value, "get(M)" to see all properties, and
```

See "Array Management for Uncertain Objects" for more information about multidimensional arrays of uncertain objects.

See Also
 umat | ureal

Related Examples

- "Uncertain State-Space Models" on page 1-32

Evaluate Uncertain Elements by Substitution

You can make substitutions for uncertain elements in uncertain matrices and models using usubs. Doing so is useful for evaluating uncertain objects at particular values of the uncertain parameters, or for sampling uncertain objects at multiple parameter values.

For example, create an uncertain matrix with three uncertain parameters.

```
a = ureal('a',3);
b = ureal('b',10,'Percentage',20);
c = ureal('c',3,'Percentage',40);
M = [-a, 1/b; b, a+1/b; 1, c]
M =
```

 Uncertain matrix with 3 rows and 2 columns.
 The uncertainty consists of the following blocks:
 a: Uncertain real, nominal \(=3\), variability \(=[-1,1], 2\) occurrences
 b: Uncertain real, nominal = 10, variability \(=[-20,20] \%, 3\) occurrences
 c: Uncertain real, nominal = 3, variability \(=[-40,40] \%\), 1 occurrences
 Type "M.NominalValue" to see the nominal value, "get(M)" to see all properties, and

Substitute all instances of the uncertain real parameter a with the value 4. This operation results in a umat containing only two uncertain real parameters, b and c.

```
M2 = usubs(M,'a',4)
M2 =
```

 Uncertain matrix with 3 rows and 2 columns.
 The uncertainty consists of the following blocks:
 b: Uncertain real, nominal \(=10\), variability \(=[-20,20] \%, 3\) occurrences
 c: Uncertain real, nominal \(=3\), variability \(=[-40,40] \%\), 1 occurrences
 Type "M2.NominalValue" to see the nominal value, "get(M2)" to see all properties, and

You can replace all instances of one uncertain real parameter with another. For example, replace all insteances of b in M with the uncertain parameter a. The resulting umat
contains only the parameters a and c, and has two additional occurrences of a, compared to M.

```
M3 = usubs(M,'b',M.Uncertainty.a)
M3 =
```

 Uncertain matrix with 3 rows and 2 columns.
 The uncertainty consists of the following blocks:
 a: Uncertain real, nominal \(=3\), variability \(=[-1,1], 5\) occurrences
 c: Uncertain real, nominal \(=3\), variability \(=[-40,40] \%, 1\) occurrences
 Type "M3.NominalValue" to see the nominal value, "get(M3)" to see all properties, and
Next, evaluate M at the nominal value of a and a random value of b.
M4 = usubs(M,'a', 'NominalValue', 'b', 'Random')
M4 =
Uncertain matrix with 3 rows and 2 columns.
The uncertainty consists of the following blocks:
c: Uncertain real, nominal $=3$, variability $=[-40,40] \%$, 1 occurrences
Type "M4.NominalValue" to see the nominal value, "get(M4)" to see all properties, and

Use the usample command to generate multiple random instances of umat, uss, or ufrd uncertain objects. See "Generate Samples of Uncertain Systems" for more information.

See Also

ufrd | umat | usample | uss | usubs

Related Examples

- "Substitution by usubs" on page 1-54
- "Generate Samples of Uncertain Systems" on page 1-50

Uncertain State-Space Models

Uncertain state-space (uss) models are linear systems with uncertain state-space matrices and/or uncertain linear dynamics. Like their numeric (i.e., not uncertain) counterpart, thess model object, you can build them from state-space matrices using the ss command. When one or more of the state-space matrices contain uncertain elements (uncertain Control Design Blocks (Control System Toolbox)), the result is a uss model object.

Combining uncertain systems with other uncertain systems (for example, using model arithmetic, connect, or feedback) usually results in an uncertain system. You can also combine numeric systems with uncertain systems. Usually the result is an uncertain system. The nominal value of an uncertain system is a ss model object.

In the example below, the A, B and C matrices are made up of uncertain real parameters. Packing them together with the ss command results in a continuous-time uncertain system.

Create Uncertain State-Space (uss) Model

To create an uncertain state-space model, you first use control design blocks to create uncertain elements. Then, use the elements to specify the state-space matrices of the system.

For instance, create three uncertain real parameters and build state-spaces matrices from them.

```
p1 = ureal('p1',10,'Percentage',50);
p2 = ureal('p2',3,'PlusMinus',[-.5 1.2]);
p3 = ureal('p3',0);
A = [-p1 p2; 0 -p1];
B = [-p2; p2+p3];
C = [1 0; 1 1-p3];
D = [0; 0];
```

The matrices constructed with uncertain parameters, A, B, and C, are umat uncertain matrix objects. Using them as inputs to the ss command results in a 2 -output, 1 -input, 2 state uncertain system.

```
sys = ss(A,B,C,D)
```


sys =

Uncertain continuous-time state-space model with 2 outputs, 1 inputs, 2 states.
The model uncertainty consists of the following blocks:
p1: Uncertain real, nominal $=10$, variability $=[-50,50] \%$, 2 occurrences
p2: Uncertain real, nominal = 3, variability $=[-0.5,1.2], 2$ occurrences
p3: Uncertain real, nominal $=0$, variability $=[-1,1], 2$ occurrences
Type "sys.NominalValue" to see the nominal value, "get(sys)" to see all properties, and

The display shows that the system includes the three uncertain parameters.

Properties of uss Objects

uss models, like all model objects, include properties that store dynamics and model metadata. View the properties of an uncertain state-space model.

```
p1 = ureal('p1',10,'Percentage',50);
p2 = ureal('p2',3,'PlusMinus',[-.5 1.2]);
p3 = ureal('p3',0);
A = [-p1 p2; 0 -p1];
B = [-p2; p2+p3];
C = [1 0; 1 1-p3];
D = [0; 0];
sys = ss(A,B,C,D); % create uss model
get(sys)
    NominalValue: [2\times1 ss]
        Uncertainty: [ 1 x 1 struct]
            A: [2\times2 umat]
            B: [2\times1 umat]
            C: [2\times2 umat]
            D: [2\times1 double]
            E: []
            StateName: {2\times1 cell}
            StateUnit: {2\times1 cell}
InternalDelay: [0×1 double]
            InputDelay: 0
            OutputDelay: [2×1 double]
                    Ts: 0
            TimeUnit: 'seconds'
```

```
        InputName: {''}
        InputUnit: {''}
        InputGroup: [1\times1 struct]
        OutputName: {2\times1 cell}
        OutputUnit: {2\times1 cell}
OutputGroup: [1\times1 struct]
        Notes: {}
    UserData: []
        Name: ''
SamplingGrid: [1×1 struct]
```

Most of the properties behave similarly to how they behave for ss model objects. The NominalValue property is itslef an ss model object. You can therefore analyze the nominal value as you would any state-space model. For instance, compute the poles and step response of the nominal system.
pole(sys.NominalValue)
ans =
-10
-10
step(sys.NominalValue)

Step Response

As with the uncertain matrices (umat), the Uncertainty property is a structure containing the uncertain elements. You can use this property for direct access to the uncertain elements. For instance, check the Range of the uncertain element named p2 within sys.
sys.Uncertainty.p2.Range
ans =
$2.5000 \quad 4.2000$

Change the uncertainty range of p 2 within sys.

```
sys.Uncertainty.p2.Range = [2 4];
```

This command only changes the range of the parameter called p2 in sys. It does not change the variable p 2 in the MATLAB workspace.
p2.Range
ans =
$2.5000 \quad 4.2000$

Lifting a ss to a uss

A not-uncertain state space object may be interpreted as an uncertain state space object that has no dependence on uncertain elements. Use the uss command to "lift" a ss to the uss class.

```
sys = rss(3,2,1);
usys = uss(sys)
USS: 3 States, 2 Outputs, 1 Input, Continuous System
```

Arrays of ss objects can also be lifted. See "Array Management for Uncertain Objects" on page 1-57 for more information about how arrays of uncertain objects are handled.

See Also

ss | umat | uss

Related Examples

- "Create and Manipulate Uncertain Matrices" on page 1-24
- "Uncertain Model Interconnections" on page 1-39

Sample Uncertain Systems

The command usample randomly samples the uncertain system at a specified number of points. Randomly sample an uncertain system at 20 points in its modeled uncertainty range. This gives a 20 -by- 1 ss array. Consequently, all analysis tools from Control System Toolbox ${ }^{\mathrm{TM}}$ are available.

```
p1 = ureal('p1',10,'Percentage',50);
p2 = ureal('p2',3,'PlusMinus',[-.5 1.2]);
p3 = ureal('p3',0);
A = [-p1 p2; 0 -p1];
B = [-p2; p2+p3];
C = [1 0; 1 1-p3];
D = [0; 0];
sys = ss(A,B,C,D) % Create uncertain state-space model
sys =
```

 Uncertain continuous-time state-space model with 2 outputs, 1 inputs, 2 states.
 The model uncertainty consists of the following blocks:
 p1: Uncertain real, nominal \(=10\), variability \(=[-50,50] \%\), 2 occurrences
 p2: Uncertain real, nominal \(=3\), variability \(=[-0.5,1.2], 2\) occurrences
 p3: Uncertain real, nominal \(=0\), variability \(=[-1,1], 2\) occurrences
 Type "sys.NominalValue" to see the nominal value, "get(sys)" to see all properties, an
manysys = usample(sys,20);
size(manysys)
20×1 array of state-space models.
Each model has 2 outputs, 1 inputs, and 2 states.
stepplot(manysys)

Step Response

The command stepplot can be called directly on a uss object. The default behavior samples the uss object at 20 instances, and plots the step responses of these 20 models, as well as the nominal value.

The same features are available for other analysis commands such as bodeplot, bodemag, impulse, and nyquist.

See Also

usample | uss

Related Examples

- "Generate Samples of Uncertain Systems" on page 1-50

Uncertain Model Interconnections

Feedback Around an Uncertain Plant

It is possible to form interconnections of uss objects. A common example is to form the feedback interconnection of a given controller with an uncertain plant.

First create the uncertain plant. Start with two uncertain real parameters.

```
gamma = ureal('gamma',4);
tau = ureal('tau',.5,'Percentage',30);
```

Next, create an unmodeled dynamics element, delta, and a first-order weighting function, whose DC value is 0.2 , high-frequency gain is 10 , and whose crossover frequency is $8 \mathrm{rad} / \mathrm{sec}$.

```
delta = ultidyn('delta',[1 1],'SampleStateDimension',5);
W = makeweight(0.2,6,6);
```

Finally, create the uncertain plant consisting of the uncertain parameters and the unmodeled dynamics.

```
P = tf(gamma,[tau 1])*(1+W*delta);
```

You can create an integral controller based on nominal plant parameters. Nominally the closed-loop system will have damping ratio of 0.707 and time constant of 2*tau.

```
KI = 1/(2*tau.Nominal*gamma.Nominal);
C = tf(KI,[1 0]);
```

Create the uncertain closed-loop system using the feedback command.

```
CLP = feedback(P*C,1);
```

Plot samples of the open-loop and closed-loop step responses. As expected the integral controller reduces the variability in the low frequency response.

```
subplot(2,1,1);
stepplot(P,5)
subplot(2,1,2);
stepplot(CLP,5)
```


Basic Model Interconnections

All the model arithmetic and model-interconnection commands of Control System Toolbox software work with uncertain models. These include:

- connect
- feedback
- series
- parallel
- append
- blkdiag
- lft
- stack

For more information about model interconnections, see "Model Interconnection" (Control System Toolbox) in the Control System Toolbox documentation.

Create Uncertain Frequency Response Data Models

Uncertain frequency responses (ufrd) arise naturally when computing the frequency response of an uncertain state-space (uss). They also arise when frequency response data (in an frd model object) is combined (added, multiplied, concatenated, etc.) to an uncertain matrix (umat).

The most common manner in which a ufrd arises is taking the frequency response of a uss. To do this, use the ufrd command.

Construct an uncertain state-space model sys.

```
p1 = ureal('p1',10,'pe',50);
p2 = ureal('p2',3,'plusm',[-.5 1.2]);
p3 = ureal('p3',0);
A = [-p1 p2;0 -p1];
B = [-p2;p2+p3];
C = [1 0;1 1-p3];
D = [0;0];
sys = ss(A,B,C,D)
sys =
```

 Uncertain continuous-time state-space model with 2 outputs, 1 inputs, 2 states.
 The model uncertainty consists of the following blocks:
p1: Uncertain real, nominal $=10$, variability $=[-50,50] \%, 2$ occurrences
p2: Uncertain real, nominal $=3$, variability $=[-0.5,1.2], 2$ occurrences
p3: Uncertain real, nominal $=0$, variability $=[-1,1]$, 2 occurrences
Type "sys.NominalValue" to see the nominal value, "get(sys)" to see all properties, and

Compute the uncertain frequency response of the uncertain system. Use the ufrd command, along with a frequency grid containing 100 points. The result is an uncertain frequency response data object, referred to as a ufrd model.

```
sysg = ufrd(sys,logspace(-2,2,100))
    Uncertain continuous-time FRD model with 2 outputs, 1 inputs, }100\mathrm{ frequency points.
    p1: Uncertain real, nominal = 10, variability = [-50,50]%, 2 occurrences
    p2: Uncertain real, nominal = 3, variability = [-0.5,1.2], 2 occurrences
    p3: Uncertain real, nominal = 0, variability = [-1,1], 2 occurrences
Type "sysg.NominalValue" to see the nominal value, "get(sysg)" to see all properties,
```


Properties of ufrd Objects

View the properties with the get command.

```
get(sysg)
            Frequency: [100x1 double]
    FrequencyUnit: 'rad/TimeUnit'
        ResponseData: [4-D umat]
        NominalValue: [2x1 frd]
            Uncertainty: [1x1 struct]
            InputDelay: 0
        OutputDelay: [2x1 double]
                    Ts: 0
            TimeUnit: 'seconds'
            InputName: {''}
            InputUnit: {''}
            InputGroup: [1x1 struct]
            OutputName: {2x1 cell}
            OutputUnit: {2x1 cell}
        OutputGroup: [1x1 struct]
                            Name: '।
                    Notes: {}
            UserData: []
```

The properties ResponseData and Frequency behave in exactly the same manner as Control System Toolbox frd objects, except that ResponseData is a umat. The properties InputName, OutputName, InputGroup and OutputGroup behave in exactly the same manner as all of the Control System Toolbox objects (ss, zpk, tf and frd).

The NominalValue is a Control System Toolbox frd object, and hence all methods for frd objects are available. For instance, plot the Bode response of the nominal system.
bode(sysg.nom)

Just as with the umat and uss classes, the Uncertainty property is a structure containing the uncertain elements. Direct access to the elements is facilitated through Uncertainty. Change the nominal value of the uncertain element named 'p1' within sysg to 14, and replot the Bode plot of the (new) nominal system.

sysg.unc.p1.nom = 14

UFRD: 2 Outputs, 1 Input, Continuous System, 100 Frequency points
p1: real, nominal $=14$, variability $=\left[\begin{array}{cc}-50 & 50] \%, 2 \text { occurrences }\end{array}\right.$
p2: real, nominal $=3$, variability $=\left[\begin{array}{ll}-0.5 & 1.2], \\ 2 & \text { occurrences }\end{array}\right.$
p3: real, nominal $=0$, variability $=\left[\begin{array}{cc}-1 & 1], 2 \text { occurrences }\end{array}\right.$

Lifting an frd to a ufrd

A not-uncertain frequency response object may be interpreted as an uncertain frequency response object that has no dependence on uncertain elements. Use the ufrd command to "lift" an frd object to the ufrd class.

```
sys = rss(3,2,1);
sysg = frd(sys,logspace(-2,2,100));
usysg = ufrd(sysg)
UFRD: 2 Outputs, 1 Input, Continuous System, 100 Frequency points
```

Arrays of frd objects can also be lifted. See "Array Management for Uncertain Objects" on page 1-57 for more information about how arrays of uncertain objects are handled.

See Also ufrd

Simplifying Representation of Uncertain Objects

A minimal realization of the transfer function matrix

$$
H(s)=\left[\begin{array}{cc}
\frac{2}{s+1} & \frac{4}{s+1} \\
\frac{3}{s+1} & \frac{6}{s+1}
\end{array}\right]
$$

has only 1 state, obvious from the decomposition

$$
H(s)=\left[\begin{array}{l}
2 \\
3
\end{array}\right] \frac{1}{s+1}\left[\begin{array}{ll}
1 & 2
\end{array}\right]
$$

However, a "natural" construction, formed by

```
sys11 = ss(tf(2,[1 1]));
sys12 = ss(tf(4,[1 1]));
sys21 = ss(tf(3,[1 1]));
sys22 = ss(tf(6,[1 1]));
sys = [sys11 sys12;sys21 sys22]
a =
\begin{tabular}{rrrrr} 
& x1 & x2 & x3 & x4 \\
x1 & -1 & 0 & 0 & 0 \\
x2 & 0 & -1 & 0 & 0 \\
x3 & 0 & 0 & -1 & 0 \\
x4 & 0 & 0 & 0 & -1
\end{tabular}
b =
            u1 u2
        x1 2 0
        x2 0 2
        x3 2 0
        x4 0 2
c =
\begin{tabular}{lrrrr} 
& \(x 1\) & \(x 2\) & \(x 3\) & \(x 4\) \\
\(y 1\) & 1 & 2 & 0 & 0 \\
\(y 2\) & 0 & 0 & 1.5 & 3
\end{tabular}
d =
    lrr
```

Continuous-time model
has four states, and is nonminimal.
In the same manner, the internal representation of uncertain objects built up from uncertain elements can become nonminimal, depending on the sequence of operations in their construction. The command simplify employs ad-hoc simplification and reduction schemes to reduce the complexity of the representation of uncertain objects. There are three levels of simplification: off, basic and full. Each uncertain element has an AutoSimplify property whose value is either 'off', 'basic' or 'full'. The default value is 'basic'.

After (nearly) every operation, the command simplify is automatically run on the uncertain object, cycling through all of the uncertain elements, and attempting to simplify (without error) the representation of the effect of that uncertain object. The AutoSimplify property of each element dictates the types of computations that are performed. In the 'off' case, no simplification is even attempted. In 'basic', fairly simple schemes to detect and eliminate nonminimal representations are used. Finally, in 'full', numerical based methods similar to truncated balanced realizations are used, with a very tight tolerance to minimize error.

Effect of the Autosimplify Property

Create an uncertain real parameter, view the AutoSimplify property of a, and then create a 1-by-2 umat, both of whose entries involve the uncertain parameter.

```
a = ureal('a',4);
a.AutoSimplify
ans =
basic
m1 = [a+4 6*a]
UMAT: 1 Rows, 2 Columns
    a: real, nominal = 4, variability = [-1 1], 1 occurrence
```

Note that although the uncertain real parameter a appears in both (two) entries of the matrix, the resulting uncertain matrix m 1 only depends on " 1 occurrence" of a.

Set the AutoSimplify property of a to 'off' (from 'basic'). Recreate the 1-by-2 umat. Now note that the resulting uncertain matrix m2 depends on " 2 occurrences" of a.

```
a.AutoSimplify = 'off';
m2 = [a+4 6*a]
```

```
UMAT: 1 Rows, 2 Columns
    a: real, nominal = 4, variability = [-1 1], 2 occurrences
```

The 'basic' level of autosimplification often detects (and simplifies) duplication created by linear terms in the various entries. Higher order (quadratic, bilinear, etc.) duplication is often not detected by the 'basic' autosimplify level.

For example, reset the AutoSimplify property of a to 'basic' (from 'off'). Create an uncertain real parameter, and a 1-by-2 umat, both of whose entries involve the square of the uncertain parameter.

```
a.AutoSimplify = 'basic';
m3 = [a*(a+4) 6*a*a]
UMAT: 1 Rows, 2 Columns
    a: real, nominal = 4, variability = [-1 1], 4 occurrences
```

Note that the resulting uncertain matrix m3 depends on "4 occurrences" of a.
Set the AutoSimplify property of a to 'full' (from 'basic'). Recreate the 1-by-2 umat. Now note that the resulting uncertain matrix m4 depends on " 2 occurrences" of a.

```
a.AutoSimplify = 'full';
m4 = [a*(a+4) 6*a*a]
UMAT: 1 Rows, 2 Columns
    a: real, nominal = 4, variability = [-1 1], 2 occurrences
```

Although m 4 has a less complex representation (2 occurrences of a rather than 4 as in m 3), some numerical variations are seen when both uncertain objects are evaluated at (say) 0 .
usubs (m3, 'a', 0)
ans =

```
usubs(m4,'a',0)
```

ans $=$
1.0e-015 *
-0.4441 0

Small numerical differences are also noted at other evaluation points. The example below shows the differences encountered evaluating at a equal to 1 .

```
usubs(m3,'a',1)
ans =
    5 6
```

```
usubs(m4,'a',1)
ans =
    5.0000 6.0000
```


Direct Use of simplify

The simplify command can be used to override all uncertain element's AutoSimplify property. The first input to the simplify command is an uncertain object. The second input is the desired reduction technique, which can either 'basic' or 'full'.

Again create an uncertain real parameter, and a 1-by-2 umat, both of whose entries involve the square of the uncertain parameter. Set the AutoSimplify property of a to 'basic'.

```
a.AutoSimplify = 'basic';
m3 = [a*(a+4) 6*a*a]
UMAT: 1 Rows, 2 Columns
    a: real, nominal = 4, variability = [-1 1], 4 occurrences
```

Note that the resulting uncertain matrix m3 depends on four occurrences of a.
The simplify command can be used to perform a 'full' reduction on the resulting umat.

```
m4 = simplify(m3,'full')
UMAT: 1 Rows, 2 Columns
    a: real, nominal = 4, variability = [-1 1], 2 occurrences
```

The resulting uncertain matrix m4 depends on only two occurrences of a after the reduction.

See Also

simplify

Related Examples

- "Introduction to Uncertain Elements" on page 1-2
- "Decomposing Uncertain Objects" on page 1-71

Generate Samples of Uncertain Systems

Use the usample function to randomly sample an uncertain model, returning one or more non-uncertain instances of the uncertain model.

Generating One Sample

If A is an uncertain object, then usample (A) generates a single sample of A.
For example, a sample of a ureal is a scalar double.
$\mathrm{A}=$ ureal('A', 6);
$B=$ usample(A)
B $=$
5.7298

Create a 1-by-3 umat with A and an uncertain complex parameter C. A single sample of this umat is a 1-by- 3 double.

```
C = ucomplex('C',2+6j);
M = [A C A*A];
usample(M)
ans =
    5.9785 1.4375 + 6.0290i 35.7428
```


Generating Many Samples

If A is an uncertain object, then usample (A, N) generates N samples of A.
For example, 20 samples of a ureal gives a 1-by-1-20 double array.
B = usample(A,20);
size(B)
ans =
$1 \quad 1 \quad 20$
Similarly, 30 samples of the 1-by-3 umat M yields a 1-by-3-by-30 array.
size (usample (M, 30))
ans =

130
See "Sample Uncertain Elements to Create Arrays" on page 1-63 for more information on sampling uncertain objects.

Sampling ultidyn Elements

When sampling an ultidyn element or an uncertain object that contains a ultidyn element, the result is always a state-space (ss) object. The property SampleStateDimension of the ultidyn class determines the state dimension of the samples.

Create a 1-by-1, gain bounded ultidyn object with gain bound 3. Verify that the default state dimension for samples is 1 .

```
del = ultidyn('del',[1 1],'Bound',3);
del.SampleStateDimension
ans =
    1
```

Sample the uncertain element at 30 points. Verify that this creates a 30 -by- 1 ss array of 1 -input, 1 -output, 1 -state systems.

```
delS = usample(del,30);
```

size(delS)
$30 x 1$ array of state-space models.
Each model has 1 outputs, 1 inputs, and 1 states.

Plot the Nyquist plot of these samples and add a disk of radius 3. Note that the gain bound is satisfied and that the Nyquist plots are all circles, indicative of 1st order systems.

```
nyquist(delS)
hold on;
theta = linspace(-pi,pi);
plot(del.Bound*exp(sqrt(-1)*theta),'r');
hold off;
```


Change SampleStateDimension to 4, and repeat entire procedure. The Nyquist plots satisfy the gain bound and as expected are more complex than the circles found in the 1 st-order sampling.

```
del.SampleStateDimension = 4;
delS = usample(del,30);
nyquist(delS)
hold on;
theta = linspace(-pi,pi);
plot(del.Bound*exp(sqrt(-1)*theta),'r');
hold off;
```


See Also

usample | usubs

Related Examples

- "Evaluate Uncertain Elements by Substitution" on page 1-30

Substitution by usubs

If an uncertain object (umat, uss, ufrd) has many uncertain parameters, it is often necessary to freeze some, but not all, of the uncertain parameters to specific values. The usubs command accomplishes this, and also allows more complicated substitutions for an element.
usubs accepts a list of element names, and respective values to substitute for them. You can create three uncertain real parameters and use them to create a 2 -by- 2 uncertain matrix A.

```
delta = ureal('delta',2);
eta = ureal('eta',6);
rho = ureal('rho',-1);
A = [3+delta+eta delta/eta;7+rho rho+delta*eta]
A =
```

 Uncertain matrix with 2 rows and 2 columns.
 The uncertainty consists of the following blocks:
 delta: Uncertain real, nominal = 2, variability \(=[-1,1], 2\) occurrences
 eta: Uncertain real, nominal = 6, variability = [-1,1], 3 occurrences
 rho: Uncertain real, nominal = -1, variability = [-1,1], 1 occurrences
 Type "A.NominalValue" to see the nominal value, "get(A)" to see all properties, and

Use usubs to substitute the uncertain element named delta in A with the value 2.3, leaving all other uncertain elements intact. Note that the result, B, is an uncertain matrix with dependence only on eta and rho.

```
B = usubs(A,'delta',2.3)
B =
```

 Uncertain matrix with 2 rows and 2 columns.
 The uncertainty consists of the following blocks:
 eta: Uncertain real, nominal \(=6\), variability \(=[-1,1], 3\) occurrences
 rho: Uncertain real, nominal \(=-1\), variability \(=[-1,1]\), 1 occurrences
 Type "B.NominalValue" to see the nominal value, "get(B)" to see all properties, and

To set multiple elements, list individually, or group the values in a data structure. For instance, the following are the same.

```
B1 = usubs(A,'delta',2.3,'eta',A.Uncertainty.rho);
S.delta = 2.3;
S.eta = A.Uncertainty.rho;
B2 = usubs(A,S);
```

In each case, delta is replaced by 2.3, and eta is replaced by A. Uncertainty.rho.
Any superfluous substitution requests are ignored. Hence, the following returns an uncertain model that is the same as A.

```
B4 = usubs(A,'fred',5);
```


Specifying the Substitution with Structures

An alternative syntax for usubs is to specify the substituted values in a structure, whose fieldnames are the names of the elements being substituted with values.

Create a structure NV with 2 fields, delta and eta. Set the values of these fields to be the desired substituted values. Then perform the substitution with usubs.

```
NV.delta = 2.3;
NV.eta = A.Uncertainty.rho;
B6 = usubs(A,NV);
```

Here, B6 is the same as B1 and B2 above. Again, any superfluous fields are ignored. Therefore, adding an additional field gamma to NV, and substituting does not alter the result.

```
NV.gamma = 0;
B7 = usubs(A,NV);
```

Here, B7 is the same as B6.
Analysis commands such as wcgain, robstab and usample all return substitutable values in this structure format. More discussion can be found in "Substitute Uncertain Elements to Create Arrays" on page 1-66.

Nominal and Random Values

If the replacement value is 'Nominal' (or a shortened version such as 'Nom'), then the listed element are replaced with their nominal values. Therefore

```
B8 = usubs(A,fieldnames(A.Uncertainty),'nom')
```

```
B8 =
```

 \(11.0000 \quad 0.3333\)
 \(6.0000 \quad 11.0000\)
 B9 = A.NominalValue
B9 =

11.0000	0.3333
6.0000	11.0000

are the same. It is possible to only set some of the elements to NominalValues, and would be the typical use of usubs with the 'nominal' argument.

Within A, set eta to its nominal value, delta to a random value (within its range) and rho to a specific value, say 6.5

```
B10 = usubs(A,'eta','nom','delta','rand','rho',6.5)
B10 =
    10.5183 0.2531
    13.5000 15.6100
```

Unfortunately, the 'nominal' and 'Random' specifiers may not be used in the structure format. However, explicitly setting a field of the structure to an element's nominal value, and then following (or preceeding) the call to usubs with a call to usample (to generate the random samples) is acceptable, and achieves the same effect.

See Also

usample | usubs

Related Examples

- "Sample Uncertain Systems" on page 1-37
- "Evaluate Uncertain Elements by Substitution" on page 1-30

Array Management for Uncertain Objects

All of the uncertain system classes (uss, ufrd) may be multidimensional arrays. This is intended to provide the same functionality as the LTI-arrays of the Control System Toolbox software. The command size returns a row vector with the sizes of all dimensions.

The first two dimensions correspond to the outputs and inputs of the system. Any dimensions beyond are referred to as the array dimensions. Hence, if szM = size (M), then $\operatorname{szM}(3$: end) are sizes of the array dimensions of M.

For these types of objects, it is clear that the first two dimensions (system output and input) are interpreted differently from the 3rd, 4th, 5 th and higher dimensions (which often model parametrized variability in the system input/output behavior).
umat objects are treated in the same manner. The first two dimensions are the rows and columns of the uncertain matrix. Any dimensions beyond are the array dimensions.

Reference Into Arrays

Suppose M is a umat, uss or ufrd, and that Yidx and Uidx are vectors of integers. Then
M(Yidx, Uidx)
selects the outputs (rows) referred to by Yidx and the inputs (columns) referred to by Uidx, preserving all of the array dimensions. For example, if size (M) equals [$\begin{array}{llll}4 & 5 & 3 & 6\end{array}$ 7], then (for example) the size of $M\left(\left[\begin{array}{ll}4 & 2\end{array}\right],\left[\begin{array}{lll}1 & 2 & 4\end{array}\right]\right)$ is $\left[\begin{array}{llll}2 & 3 & 3 & 6\end{array}\right]$.

If size $(M, 1)==1$ or size $(M, 2)==1$, then single indexing on the inputs or outputs (rows or columns) is allowed. If Sidx is a vector of integers, then M (Sidx) selects the corresponding elements. All array dimensions are preserved.

If there are K array dimensions, and idx1, idx2, ..., idxK are vectors of integers, then

G = M(Yidx,Uidx,idx1,idx2,...,idxK)
selects the outputs and inputs referred to by Yidx and Uidx, respectively, and selects from each array dimension the "slices" referred to by the idx1, idx2, ..., idxK index vectors. Consequently, size(G,1) equals length(Yidx), size(G,2)
equals length(Uidx), $\operatorname{size}(G, 3)$ equals length(idx1), size(G,4) equals length (idx2), and size ($G, K+2$) equals length (idxK).

If M has K array dimensions, and less than K index vectors are used in doing the array referencing, then the MATLAB convention for single indexing is followed. For instance, suppose size(M) equals [$\left.\begin{array}{lllll}3 & 4 & 6 & 5 & 7\end{array}\right]$. The expression
$G=M\left(\left[\begin{array}{ll}1 & 3\end{array}\right],\left[\begin{array}{ll}1 & 4\end{array}\right],\left[\begin{array}{lll}2 & 3 & 4\end{array}\right],\left[\begin{array}{lll}5 & 3 & 1\end{array}\right],\left[\begin{array}{llllll}8 & 10 & 12 & 2 & 4 & 20\end{array} 18\right]\right)$
is valid. The result has size (G) equals $\left[\begin{array}{llll}2 & 2 & 3 & 3\end{array} 7\right.$]. The last index vector [8 10 12 2420 18] is used to reference into the 7-by-4 array, preserving the order dictated by MATLAB single indexing (e.g., the 10th element of a 7 -by- 4 array is the element in the $(3,2)$ position in the array).

Note that if M has either one output (row) or one input (column), and M has array dimensions, then it is not allowable to combine single indexing in the output/input dimensions along with indexing in the array dimensions. This will result in an ambiguity in how to interpret the second index vector in the expression (i.e., "does it correspond to the input/output reference, or does it correspond to the first array dimension?").

Related Examples

- "Model Arrays" (Control System Toolbox)

Create Arrays with stack and cat Functions

An easy manner to create an array is with stack. Create a [4-by-1] umat array by stacking four 1-by-3 umat objects with the stack command. The first argument of stack specifies in which array dimension the stacking occurs. In the example below, the stacking is done is the 1 st array dimension, hence the result is a 1 -by- 3 -by- 4 -by- 1 umat, referred to as a 4 -by- 1 umat array.

```
a = ureal('a',4);
b = ureal('b',2);
M = stack(1,[a b 1],[-a -b 4+a],[4 5 6],[a O 0])
UMAT: 1 Rows, 3 Columns [array, 4 x 1]
    a: real, nominal = 4, variability = [-1 1], 1 occurrence
    b: real, nominal = 2, variability = [-1 1], 1 occurrence
size(M)
ans =
    1 3 4
arraysize(M)
ans =
    4
```

Check that result is valid. Use referencing to access parts of the [4-by-1] umat array and compare to the expected values. The first 4 examples should all be arrays full of 0 (zeros). The last two should be the value 5 , and the uncertain real parameter a, respectively.

```
simplify(M(:,:,1) - [a b 1])
ans =
    0 0 0
simplify(M(:,:,2) - [-a -b 4+a])
ans =
    0 0 0
simplify(M(:,:,3) - [4 5 6])
ans =
    0 0 0
simplify(M(:,:,4) - [a O O])
ans =
    0 0 0
simplify(M(1,2,3)) % should be 5
ans =
    5
simplify(M(1, 3,2)-4)
Uncertain Real Parameter: Name a, NominalValue 4, variability = [-1 1]
```

You can create a random 1-by-3-by-4 double matrix and stack this with M along the second array dimension, creating a 1-by-3-by-4-by-2 umat.

```
N = randn(1,3,4);
M2 = stack(2,M,N);
size(M2)
ans =
    1 3 4 4
arraysize(M2)
ans =
    4
```

As expected, both M and N can be recovered from $M 2$.

```
d1 = simplify(M2(:,:,:,1)-M);
d2 = simplify(M2(:,:,:,2)-N);
[max(abs(d1(:))) max(abs(d2(:)))]
ans =
    0
```

It is also possible to stack M and N along the 1st array dimension, creating a 1-by-3-by-8-by-1 umat.

```
M3 = stack(1,M,N);
size(M3)
ans =
    1 3 8
arraysize(M3)
ans =
    8 1
```

As expected, both M and N can be recovered from M3.

```
d3 = simplify(M3(:,:,1:4)-M);
d4 = simplify(M3(:,:,5:8)-N);
[max(abs(d3(:))) max(abs(d4(:)))]
ans =
    0
```


Create Arrays by Assignment

Arrays can be created by direct assignment. As with other MATLAB classes, there is no need to preallocate the variable first. Simply assign elements - all resizing is performed automatically.

For instance, an equivalent construction to

```
a = ureal('a',4);
b = ureal('b',2);
M = stack(1,[a b 1],[-a -b 4+a],[4 5 6],[a O 0]);
is
Mequiv(1,1,1) = a;
Mequiv(1,2,1) = b;
Mequiv(1,3,1) = 1;
Mequiv(1,:,4) = [a 0 0];
Mequiv(1,:,2:3) = stack(1,[-a -b 4+a],[4 5 6]);
```

The easiest manner for you to verify that the results are the same is to subtract and simplify,

```
d5 = simplify(M-Mequiv);
max(abs(d5(:)))
ans =
    0
```


Binary Operations with Arrays

Most operations simply cycle through the array dimensions, doing pointwise operations. Assume A and B are umat (or uss, or ufrd) arrays with identical array dimensions (slot 3 and beyond). The operation $C=\operatorname{fcn}(A, B)$ is equivalent to looping on $k 1, k 2, \ldots$, setting
$C(:,:, k 1, k 2, \ldots)=f c n(A(:,:, k 1, k 2, \ldots), B(:,:, k 1, k 2, \ldots))$
The result C has the same array dimensions as A and B. The user is required to manage the extra dimensions (i.e., keep track of what they mean). Methods such as permute, squeeze and reshape are included to facilitate this management.

In general, any binary operation requires that the extra-dimensions are compatible. The umat, uss and ufrd objects allow for slightly more flexible interpretation of this. For illustrative purposes, consider a binary operation involving variables A and B. Suppose the array dimensions of A are $n_{1} \times \ldots \times n_{l_{A}}$ and that the array dimensions of B are $m_{1} \times \ldots \times m_{l_{B}}$. By MATLAB convention, the infinite number of singleton (i.e., 1) trailing dimensions are not listed. The compatibility of the extra dimensions is determined by the following rule: If $l A=l B$, then pad the shorter dimension list with trailing 1's. Now compare the extra dimensions: In the k-th dimension, it must be that one of 3 conditions hold: $n k=m k$, or $n k=1$, or $m k=1$. In other words, non-singleton dimensions must exactly match (so that the pointwise operation can be executed), and singleton dimensions match with anything, implicitly through a repmat.

Sample Uncertain Elements to Create Arrays

A common way to generate an array is to sample the uncertain elements of an uncertain object. This example shows how to generate arrays by taking random samples of a umat uncertain matrix that has two uncertain elements. To generate arrays by sampling at specific values, use usubs.

Create an uncertain matrix.

```
a = ureal('a',4);
b = ureal('b',2);
M = [a b;b*b a/b;1-b 1+a*b]
M =
    Uncertain matrix with 3 rows and 2 columns.
    The uncertainty consists of the following blocks:
    a: Uncertain real, nominal = 4, variability = [-1,1], 3 occurrences
    b: Uncertain real, nominal = 2, variability = [-1,1], 6 occurrences
```

Type "M.NominalValue" to see the nominal value, "get(M)" to see all properties, and "M

Sample the uncertain real parameter b in the matrix M, at 20 random points within its range.
[Ms,bvalues] = usample(M,'b',20);
This results in an array of 20 3-by-2 umat matrices, with only one uncertain element, a. The uncertain element b of M has been sampled out, leaving a new array dimension in its place.

Ms

Ms =
20×1 array of uncertain matrices with 3 rows, 2 columns, and the following uncertain a: Uncertain real, nominal $=4$, variability $=[-1,1], 3$ occurrences

Type "Ms.NominalValue" to see the nominal value, "get(Ms)" to see all properties, and

Addtionally, bvalues is a structure containing the corresponding sampled values of b.

```
bvalues
bvalues =
    20\times1 struct array with fields:
    b
```

Next, sample the remaining uncertain real parameter a in the matrix Ms. This removes the second uncertain block, resulting in a 3 -by-2-by-20-by-15 double.
[Mss,avalues] = usample(Ms,'a', 15); size(Mss)
ans =

3	20	15

You can also sample multiple parameters at once. The following operation returns Mss1, which is identical to Mss.
[Mss1,values] = usample(M,'b',20,'a',15);
Rather than sampling the each variable (a and b) independently, generating a 20-by-15 grid in a 2 -dimensional space, you can sample the two-dimensional space can be sampled. Sample the 2-dimensional space with 800 points.
[Ms2d,values] = usample(M,\{'a' 'b'\},800);
Ms2d is a 3-by-2-by-800 umat array, where each entry corresponds to a different randomly selected (a, b) pair. The structure array values contains these (a, b) values.
values

```
values =
    800\times1 struct array with fields:
```

a
b

See Also umat | usample | usubs
 Related Examples

- "Substitute Uncertain Elements to Create Arrays" on page 1-66

Substitute Uncertain Elements to Create Arrays

You can generate an array from an uncertain object by replacing the uncertain elements with specified values. There are several ways to do this using usubs.

Create a 3-by-2 uncertain matrix using two uncertain real parameters.

```
a = ureal('a',4);
b = ureal('b',2);
M = [a b;b*b a/b;1-b 1+a*b];
```

Evaluate the matrix at four different combinations of values for the uncertain parameters a and b.

```
avals = [1;2;3;4];
bvals = [10;11;12;13];
M1 = usubs(M,'a',avals,'b',bvals);
```

This command evaluates M for the four different (a, b) combinations $(1,10),(2,11)$, and so on. Therefore, M1 is a 3-by-2-by-4 double array containing the four evaluated values of M along its last dimension.

```
size(M1)
```

ans =
$\begin{array}{lll}3 & 2 & 4\end{array}$

For more examples, see usubs.

See Also

umat | usample | usubs

Related Examples

- "Sample Uncertain Elements to Create Arrays" on page 1-63

Create Arrays with gridureal

The command gridureal enables uniform sampling of specified uncertain real parameters within an uncertain object. It is a specialized case of usubs.
gridureal removes a specified uncertain real parameter and adds an array dimension (to the end of the existing array dimensions). The new array dimension represents the uniform samples of the uncertain object in the specified uncertain real parameter range.

Create a 2-by-2 uncertain matrix with three uncertain real parameters.

```
a = ureal('a',3,'Range',[2.5 4]);
b = ureal('b',4,'Percentage',15);
c = ureal('c',-2,'Plusminus',[-1 .3]);
M = [a b;b c]
UMAT: 2 Rows, 2 Columns
    a: real, nominal = 3, range = [2.5 4], 1 occurrence
    b: real, nominal = 4, variability = [-15 15]%, 2 occurrences
    c: real, nominal = -2, variability = [-1 0.3], 1 occurrence
```

Grid the uncertain real parameter b in M with 100 points. The result is a umat array, with dependence on uncertain real parameters a and c.

```
Mgrid1 = gridureal(M,'b',100)
UMAT: 2 Rows, 2 Columns [array, 100 x 1]
    a: real, nominal = 3, range = [2.5 4], 1 occurrence
    c: real, nominal = -2, variability = [-1 0.3], 1 occurrence
```

Operating on the uncertain matrix M, grid the uncertain real parameter a with 20 points, the uncertain real parameter b with 12 points, and the uncertain real parameter c with 7 points, The result is a 2 -by-2-by20-by-12-by7 double array.

```
Mgrid3 = gridureal(M,'a', 20,'b', 12,'c',7);
size(Mgrid3)
ans =
    2 2 20
```


Create Arrays with repmat

The MATLAB command repmat is used to replicate and tile arrays. It works on the built-in objects of MATLAB, namely double, char, as well as the generalized container objects cell and struct. The identical functionality is provided for replicating and tiling uncertain elements (ureal, ultidyn, etc.) and umat objects.

You can create an uncertain real parameter, and replicate it in a 2 -by- 3 uncertain matrix. Compare to generating the same uncertain matrix through multiplication.

```
a = ureal('a',5);
Amat = repmat(a,[2 3])
UMAT: 2 Rows, 3 Columns
    a: real, nominal = 5, variability = [-1 1], 1 occurrence
Amat2 = a*ones(2,3);
simplify(Amat-Amat2)
ans =
    0
```

Create a [4-by-1] umat array by stacking four 1-by-3 umat objects with the stack command. Use repmat to tile this 1-by-3-by-4-by-1 umat, into a 2 -by- 3 -by- 8 -by- 5 umat.

```
a = ureal('a',4);
b = ureal('b',2);
M = stack(1,[a b 1],[-a -b 4+a],[4 5 6],[a 0 0]);
size(M)
ans =
    1 3 4
Mtiled = repmat(M,[2 1 2 5])
UMAT: 2 Rows, 3 Columns [array, 8 x 5]
    a: real, nominal = 4, variability = [-1 1], 1 occurrence
    b: real, nominal = 2, variability = [-1 1], 1 occurrence
Verify the equality of M and a few certain tiles of Mtiled.
d1 = simplify(M-Mtiled(2,:,5:8,3));
d2 = simplify(M-Mtiled(1,:,1:4,2));
d3 = simplify(M-Mtiled(2,:,1:4,5));
[max(abs(d1(:))) max(abs(d2(:))) max(abs(d3(:)))]
ans =
    0 0 0
```

Note that repmat never increases the complexity of the representation of an uncertain object. The number of occurrences of each uncertain element remains the same, regardless of the extent of the replication and tiling.

Create Arrays with repsys

Replicating and tiling uncertain state-space systems (uss, and uncertain frequency response data (ufrd) is done with repsys. The syntax and behavior are the same as the manner in which repmat is used to replicate and tile matrices. The syntax and behavior of repsys for uss and ufrd objects are the same as the traditional repsys which operates on ss and frd objects. Just as in those cases, the uncertain version of repsys also allows for diagonal tiling.

Using permute and ipermute

The commands permute and ipermute are generalizations of transpose, which exchanges the rows and columns of a two-dimensional matrix.
permute (A, ORDER) rearranges the dimensions of A so that they are in the order specified by the vector ORDER. The array produced has the same values of A but the order of the subscripts needed to access any particular element are rearranged as specified by ORDER. The elements of ORDER must be a rearrangement of the numbers from 1 to N .

All of the uncertain objects are essentially 2 -dimensional (output and input) operators with array dependence. This means that the first 2 dimensions are treated differently from dimensions 3 and beyond. It is not permissible to permute across these groups.

For uss and ufrd, the restriction is built into the syntax. The elements of the ORDER vector only refer to array dimensions. Therefore, there is no possibility of permute across these dimensions. In you need to permute the first two dimensions, use the command transpose instead.

For umat, the restriction is enforced in the software. The elements of the ORDER vector refer to all dimensions. However, the first two elements of ORDER must be a rearrangement of the numbers 1 and 2 . The remaining elements of ORDER must be a rearrangement of the numbers 3 through N . If either of those conditions fail, an error is generated. Hence, for umat arrays, either permute or transpose can be used to effect the transpose operation.

Decomposing Uncertain Objects

Each uncertain object (umat, uss, ufrd) is a generalized feedback connection (lft) of a not-uncertain object (e.g., double, ss, frd) with a diagonal augmentation of uncertain elements (ureal, ultidyn, ucomplex, ucomplexm, udyn). In robust control jargon, if the uncertain elements are normalized, this decomposition is often called "the M/D form."

The purpose of the uncertain objects (ureal, ultidyn, umat, uss, etc.) is to hide this underlying decomposition, and allow the user to focus on modeling and analyzing uncertain systems, rather than the details of correctly propagating the M/D representation in manipulations. Nevertheless, advanced users may want access to the familiar M/D form. The command lftdata accomplishes this decomposition.

Since ureal, ucomplex and ucomplexm do not have their NominalValue necessarily at zero, and in the case of ureal objects, are not symmetric about the NominalValue, some details are required in describing the decomposition.

Normalizing Functions for Uncertain Elements

Associated with each uncertain element is a normalizing function. The normalizing function maps the uncertain element into a normalized uncertain element.

If ρ is an uncertain real parameter, with range [$L R$] and nominal value N, then the normalizing function F is

$$
F(\rho)=\frac{A+B \rho}{C+D \rho}
$$

with the property that for all ρ satisfying $L \leq \rho \leq R$, it follows that $-1 \leq F(\rho) \leq 1$, moreover, $F(L)=-1, F(N)=0$, and $F(R)=1$. If the nominal value is centered in the range, then it is easy to conclude that

$$
\begin{aligned}
& A=\frac{R+L}{R-L} \\
& B=\frac{2}{R-L} \\
& C=1 \\
& D=0 .
\end{aligned}
$$

It is left as an algebra exercise for the user to work out the various values for A, B, C and D when the nominal value is not centered.

If E is an uncertain gain-bounded, linear, time-invariant dynamic uncertainty, with gainbound B, then the normalizing function F is

$$
F(E)=\frac{1}{\beta} E .
$$

If E is an uncertain positive-real, linear, time-invariant dynamic uncertainty, with positivity bound B, then the normalizing function F is

$$
F(E)=\left[I-\alpha\left(E-\frac{\beta}{2} I\right)\right]\left[I+\alpha\left(E-\frac{\beta}{2} I\right)\right]^{-1}
$$

where $\alpha=2|\beta|+1$.
The normalizing function for an uncertain complex parameter ξ, with nominal value C and radius γ, is

$$
F(\xi)=\frac{1}{\gamma}(\xi-C)
$$

The normalizing function for uncertain complex matrices H, with nominal value N and weights W_{L} and W_{R} is

$$
F(H)=W_{L}^{-1}(H-N) W_{R}^{-1}
$$

In each case, as the uncertain element varies over its range, the absolute value of the normalizing function (or norm, in the matrix case) varies from 0 and 1.

Properties of the Decomposition

Take an uncertain object A, dependent on uncertain real parameters $\rho_{1}, \ldots, \rho_{N}$, uncertain complex parameters ξ_{1}, \ldots, ξ_{K}, uncertain complex matrices H_{1}, \ldots, H_{B}, uncertain gainbounded linear, time-invariant dynamics E_{1}, \ldots, E_{D}, and uncertain positive-real linear, time-invariant dynamics P_{1}, \ldots, P_{Q}.

Write $A(\rho, \xi, H, E, P)$ to indicate this dependence. Using lftdata, A can be decomposed into two separate pieces: M and $\Delta(\rho, \xi, H, E, P)$ with the following properties:

- M is certain (i.e., if A is uss, then M is ss; if A is umat, then M is double; if A is ufrd, then M is frd).
- Δ is always a umat, depending on the same uncertain elements as A, with ranges, bounds, weights, etc., unaltered.
- The form of Δ is block diagonal, with elements made up of the normalizing functions acting on the individual uncertain elements:

$$
\Delta(\rho, \xi, H, E, P)=\left[\begin{array}{ccccc}
F(\rho) & 0 & 0 & 0 & 0 \\
0 & F(\xi) & 0 & 0 & 0 \\
0 & 0 & F(H) & 0 & 0 \\
0 & 0 & 0 & F(E) & 0 \\
0 & 0 & 0 & 0 & F(P)
\end{array}\right]
$$

- $A(\rho, \xi, H, E, P)$ is given by a linear fractional transformation of M and $\Delta(\rho, \zeta, H, E, P)$,

$$
A(\rho, \xi)=M_{22}+M_{21} \Delta(\rho, \xi, H, E, P)\left[I-M_{11} \Delta(\rho, \xi, H, E, P)\right]^{-1} M_{12}
$$

The order of the normalized elements making up A is not the simple order shown above. It is actually the same order as given by the command fieldnames (M. Uncertainty). See "Advanced Syntax of lftdata" on page 1-76 for more information.

Decompose Uncertain Model Using Iftdata

You decompose an uncertain model into a fixed certain part and normalized uncertain part using the lftdata command. To see how this command works, create a 2 -by- 2 uncertain matrix (umat) using three uncertain real parameters.

```
delta = ureal('delta',2);
eta = ureal('eta',6);
rho = ureal('rho',-1);
A = [3+delta+eta delta/eta;7+rho rho+delta*eta]
A =
```

```
Uncertain matrix with 2 rows and 2 columns.
The uncertainty consists of the following blocks:
    delta: Uncertain real, nominal = 2, variability = [-1,1], 2 occurrences
    eta: Uncertain real, nominal = 6, variability = [-1,1], 3 occurrences
    rho: Uncertain real, nominal = -1, variability = [-1,1], 1 occurrences
```

Type "A.NominalValue" to see the nominal value, "get(A)" to see all properties, and "A

The umat A depends on two occurrences of delta, three occurrences of eta, and one occurrence of rho.

Decompose A into M and Delta.
[M,Delta] = lftdata(A);
M is a numeric matrix.
M
$M=$
Columns 1 through 7

0	0	0	-0.1667	0	0	1.0000
0	0	0	0	1.0000	0	0
0	0	0	0	0	0	1.0000
0	0	0	-0.1667	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	1.0000
1.0000	0	1.0000	-0.3333	0	0	11.0000
0	1.0000	0	0	2.0000	1.0000	6.0000

Column 8
0.1667
6.0000

0
0.1667
1.0000
1.0000
0.3333
11.0000

Delta is a umat with the same uncertainty dependence as A.
Delta

Delta =
Uncertain matrix with 6 rows and 6 columns.
The uncertainty consists of the following blocks:
delta: Uncertain real, nominal = 2, variability = [-1,1], 2 occurrences
eta: Uncertain real, nominal $=6$, variability $=[-1,1], 3$ occurrences
rho: Uncertain real, nominal = -1, variability = [-1,1], 1 occurrences
Type "Delta.NominalValue" to see the nominal value, "get(Delta)" to see all properties

To examine some of the characteristics of Delta, sample it at three points. Note that:

- The sampled value of Delta is always diagonal.
- The sampled values alway range between -1 and 1 , because Delta is normalized.
- The sampled matrices each contain three independent values. Duplication of the entries is consistent with the dependence of Delta and A on the three uncertain real parameters.

```
usample(Delta,3)
```

$\operatorname{ans}(:,:, 1)=$					
0.6294	0	0	0	0	0
0	0.6294	0	0	0	0
0	0	0.8268	0	0	0
0	0	0	0.8268	0	0
0	0	0	0	0.8268	0
0	0	0	0	0	-0.4430
ans $(:,:, 2)$	0	0	0	0	0
0.8116	0	0	0	0	0
0	0.8116	0	0.2647	0	0

0	0	0	0	0	0.0938
ans $(:,:, 3)=$					
-0.7460	0	0	0	0	0
0	-0.7460	0	0	0	0
0	0	-0.8049	0	0	0
0	0	0	-0.8049	0	0
0	0	0	0	-0.8049	0
0	0	0	0	0	0.9150

Verify that the maximum gain of Delta is 1.

```
maxnorm = wcnorm(Delta)
maxnorm =
    struct with fields:
```

 LowerBound: 0
 UpperBound: 1.0008
 Finally, verify that lft (Delta, M) is the same as A. To do so, take the difference, and use the 'full' option in simplify to remove redundant dependencies on uncertain elements.

```
simplify(lft(Delta,M)-A,'full')
```

ans =

0	0
0	0

Advanced Syntax of Iftdata

Even for the advanced user, the variable Delta will actually not be that useful, as it is still a complex object. On the other hand, its internal structure is described completely using a 3rd (and 4th) output argument.
[M,Delta,BlkStruct,NormUnc] = lftdata(A);
The rows of BlkStruct correspond to the uncertain elements named in fieldnames (A.Uncertainty). Note that the range/bound information about each uncertain element is not included in BlkStruct.

The elements of BlkStruct describe the size, type and number-of-copies of the uncertain elements in A, and implicitly delineate the exact block-diagonal structure of Delta. Note that the range/bound information about each uncertain element is not included in BlkStruct.

```
BlkStruct(1)
```

ans =
Name: 'delta'
Size: [11]
Type: 'ureal'
Occurrences: 2
BlkStruct(2)
ans =
Name: 'eta'
Size: [11]
Type: 'ureal'
Occurrences: 3
BlkStruct(3)
ans =
Name: 'rho'
Size: [11]
Type: 'ureal'
Occurrences: 1

Together, these mean Delta is a block diagonal augmentation of the normalized version of 3 uncertain elements.

The first element is named 'delta'. It is 1-by-1; it is of class ureal; and there are 2 copies diagonally augmented.

The second element is named 'eta'. It is 1-by-1; it is of class ureal; and there are 3 copies diagonally augmented.

The third element is named 'rho '. It is 1 -by- 1 ; it is of class ureal; and there is 1 copy,
The 4 th output argument contains a cell array of normalized uncertain elements. The cell array contains as many occurrences of each element as there are occurrences in the original uncertain object A .

```
size(NormUnc)
ans =
    6 1
NormUnc{1}
Uncertain Real Parameter: Name deltaNormalized, NominalValue 0,
variability = [-1 1]
isequal(NormUnc{2},NormUnc{1})
ans =
    1
NormUnc{3}
Uncertain Real Parameter: Name etaNormalized, NominalValue 0,
variability = [-1 1]
isequal(NormUnc{4},NormUnc{3})
ans =
    1
isequal(NormUnc {5},NormUnc{3})
ans =
    1
NormUnc{6}
Uncertain Real Parameter: Name rhoNormalized, NominalValue 0,
variability = [-1 1]
```

Each normalized element has 'Normalized ' appended to its original name to avoid confusion. When normalized,

- ureal objects have nominal value of 0 , and range from -1 to 1 .
- ultidyn objects are norm bounded, with norm bound of 1 .
- ucomplex objects have nominal value of 0 , and radius 1 .
- ucomplexm objects have nominal value of 0 , and identity matrices for each of the WL andWR weights.

The possible behaviors of Delta and blkdiag (NormUnc \{: \}) are the same. Consequently, the possible behaviors of A and lft(blkdiag (NormUnc\{:\}),M) are the same.

Hence, by manipulating M, BlkStruct and NormUnc, a power-user has direct access to all of the linear fractional transformation details, and can easily work at the level of the theorems and algorithms that underlie the methods.

See Also
 lftdata

Related Examples

- "Introduction to Uncertain Elements" on page 1-2

Generalized Robustness Analysis

- "Robustness and Worst-Case Analysis" on page 2-2
- "Robust Stability, Robust Performance and Mu Analysis" on page 2-7
- "Getting Reliable Estimates of Robustness Margins" on page 2-17

Robustness and Worst-Case Analysis

In robust control design, performance is expressed and measured in terms of the peak gain (the H_{∞} norm or peak singular value) of a system. The smaller this gain is, the better the system performance. The performance of a nominally stable uncertain system generally degrades as the amount of uncertainty increases. Use robustness analysis and worst-case analysis to examine how the amount of uncertainty in your system affects the stability and peak gain of the system.

Robustness Analysis

Robustness analysis is about finding the maximum amount of uncertainty compatible with stability or with a given performance level. The following illustration shows a typical trade-off curve between performance and robustness. Here, the peak gain (peak magnitude on a Bode plot or singular-value plot) characterizes the system performance.

The x-axis quantifies the normalized amount of uncertainty. The value $x=1$ corresponds to the uncertainty ranges specified in the model. $x=2$ represents the system with twice as much uncertainty. $x=0$ corresponds to the nominal system. (See actual2normalized for more details about normalized uncertainty ranges.) The y-axis is performance, measured as the peak gain of some closed-loop transfer function. For instance, if the closed-loop transfer function measures the sensitivity of an error signal to some disturbance, then higher peak gain corresponds to poorer disturbance rejection.

When all uncertain elements are set to their nominal values $(x=0)$, the gain of the system is its nominal value. In the figure, the nominal system gain is about 1 . As the range of values that the uncertain elements can take increases, the peak gain over the uncertainty range increases. The heavy blue line represents the peak gain, and is called
the system performance degradation curve. It increases monotonically as a function of the uncertainty amount.

Robust Stability Margin

The system performance degradation curve typically has a vertical asymptote corresponding to the robust stability margin. This margin is the maximum amount of uncertainty that the system can tolerate while remaining stable. For the system of the previous illustration, the peak gain becomes infinite at around $x=2.3$. In other words, the system becomes unstable when the uncertainty range is 2.3 times that specified in the model (in normalized units). Therefore, the robust stability margin is 2.3. To compute the robust stability margin for an uncertain system model, use the robstab function.

Robust Performance Margin

The robust performance margin for a given gain, γ, is the maximum amount of uncertainty the system can tolerate while having a peak gain less than γ. For example, in the following illustration, suppose that you want to keep the peak closed-loop gain below 1.8. For that peak gain, the robust performance margin is about 1.7. This value means that the peak gain of the system remains below 1.8 as long as the uncertainty remains within 1.7 times the specified uncertainty (in normalized units).

To compute the robust performance margin for an uncertain system model, use the robgain function.

Worst-Case Gain Measure

The worst-case gain is the largest value that the peak gain can take over a specific uncertainty range. This value is the counterpart of the robust performance margin. While the robust performance margin measures the maximum amount of uncertainty compatible with a particular peak gain level, the worst-case gain measures the maximum gain associated with a particular uncertainty amount. For instance, in the following illustration, the worst-case gain for the uncertainty amount specified in the model is about 1.20. If that uncertainty amount is doubled, the worst-case gain increases to 2.5.

To compute the worst-case gain for an uncertain system model, use the wcgain function. The ULevel option of the wCOptions command lets you compute the worst-case gain for different amounts of uncertainty.

See Also

robgain | robstab | wcgain

Related Examples

- "Robust Stability and Worst-Case Gain of Uncertain System"
- "MIMO Robustness Analysis"

Robust Stability, Robust Performance and Mu Analysis

This example shows how to use Robust Control Toolbox ${ }^{\text {TM }}$ to analyze and quantify the robustness of feedback control systems. It also provides insight into the connection with mu analysis and the mussv function.

System Description

Figure 1 shows the block diagram of a closed-loop system. The plant model P is uncertain and the plant output y must be regulated to remain small in the presence of disturbances d and measurement noise n.

Figure 1: Closed-loop system for robustness analysis
Disturbance rejection and noise insensitivity are quantified by the performance objective

$$
\left\|\left(P(1+K P)^{-1} W_{d},(1+P K)^{-1} W_{n}\right)\right\|_{\infty}
$$

where W_{d} and W_{n} are weighting functions reflecting the frequency content of d and n. Here W_{d} is large at low frequencies and W_{n} is large at high frequencies.

```
Wd = makeweight(100,.4,.15);
Wn = makeweight(0.5,20,100);
bodemag(Wd,'b--',Wn,'g--')
title('Performance Weighting Functions')
legend('Input disturbance','Measurement noise')
```


Creating an Uncertain Plant Model

The uncertain plant model P is a lightly-damped, second-order system with parametric uncertainty in the denominator coefficients and significant frequency-dependent unmodeled dynamics beyond $6 \mathrm{rad} / \mathrm{s}$. The mathematical model looks like:

$$
P(s)=\frac{16}{s^{2}+0.16 s+k}\left(1+W_{u}(s) \delta(s)\right)
$$

The parameter k is assumed to be about 40% uncertain, with a nominal value of 16 . The frequency-dependent uncertainty at the plant input is assumed to be about 30% at low frequency, rising to 100% at $10 \mathrm{rad} / \mathrm{s}$, and larger beyond that. Construct the uncertain plant model P by creating and combining the uncertain elements:

```
k = ureal('k',16,'Percentage',30);
delta = ultidyn('delta',[1 1],'SampleStateDim',4);
Wu = makeweight(0.3,10,20);
P = tf(16,[1 0.16 k]) * (1+Wu*delta);
```


Designing a Controller

We use the controller designed in the example "Improving Stability While Preserving Open-Loop Characteristics". The plant model used there happens to be the nominal value of the uncertain plant model created above. For completeness, we repeat the commands used to generate the controller.

```
K_PI = pid(1,0.8);
K_rolloff = tf(1,[1/20 1]);
Kprop = K_PI*K_rolloff;
[negK,~,Gamma] = ncfsyn(P.NominalValue,-Kprop);
K = -negK;
```


Closing the Loop

Use connect to build an uncertain model of the closed-loop system of Figure 1. Name the signals coming in and out of each block and let connect do the wiring:

```
P.u = 'uP'; P.y = 'yP';
K.u = 'uK'; K.y = 'yK';
S1 = sumblk('uP = yK + D');
S2 = sumblk('uK = -yP - N');
Wn.u = 'n'; Wn.y = 'N';
Wd.u = 'd'; Wd.y = 'D';
ClosedLoop = connect(P,K,S1,S2,Wn,Wd,{'d','n'},'yP');
```

The variable ClosedLoop is an uncertain system with two inputs and one output. It depends on two uncertain elements: a real parameter k and an uncertain linear, timeinvariant dynamic element delta.

ClosedLoop

```
ClosedLoop =
Uncertain continuous-time state-space model with 1 outputs, 2 inputs, 10 states.
The model uncertainty consists of the following blocks:
    delta: Uncertain 1x1 LTI, peak gain = 1, 1 occurrences
    k: Uncertain real, nominal = 16, variability = [-30,30]%, 1 occurrences
```

```
Type "ClosedLoop.NominalValue" to see the nominal value, "get(ClosedLoop)" to see all
```


Robust Stability Analysis

The classical margins from allmargin indicate good stability robustness to unstructured gain/phase variations within the loop.

```
allmargin(P.NominalValue*K)
ans =
    struct with fields:
        GainMargin: [2.1692e-17 6.3299 11.1423]
    GMFrequency: [0 1.6110 15.1667]
    PhaseMargin: [80.0276 -99.6641 63.7989]
    PMFrequency: [0.4472 3.1460 5.2319]
    DelayMargin: [3.1236 1.4443 0.2128]
    DMFrequency: [0.4472 3.1460 5.2319]
            Stable: 1
```

Does the closed-loop system remain stable for all values of k, delta in the ranges specified above? Answering this question requires a more sophisticated analysis using the robstab function.

```
[stabmarg,wcu] = robstab(ClosedLoop);
stabmarg
stabmarg =
    struct with fields:
                            LowerBound: 1.4673
                    UpperBound: 1.4702
    CriticalFrequency: 5.8651
```

The variable stabmarg gives upper and lower bounds on the robust stability margin, a measure of how much uncertainty on k, delta the feedback loop can tolerate before becoming unstable. For example, a margin of 0.8 indicates that as little as 80% of the
specified uncertainty level can lead to instability. Here the margin is about 1.5, which means that the closed loop will remain stable for up to 150% of the specified uncertainty.

The variable wcu contains the combination of k and delta closest to their nominal values that causes instability.

```
wcu
wcu =
    struct with fields:
    delta: [1\times1 ss]
        k: 23.0571
```

We can substitute these values into ClosedLoop and verify that these values cause the closed-loop system to be unstable.

```
format short e
pole(usubs(ClosedLoop,wcu))
ans =
    -2.0938e+02 + 0.0000e+00i
    -2.4653e+01 + 0.0000e+00i
    -1.9994e+01 + 0.0000e+00i
    -8.2175e+00 + 1.1402e+01i
    -8.2175e+00 - 1.1402e+01i
    -3.2824e+00 + 0.0000e+00i
    -3.3361e-07 + 5.8651e+00i
    -3.3361e-07 - 5.8651e+00i
    -1.5869e+00 + 2.3248e+00i
    -1.5869e+00 - 2.3248e+00i
    -3.5333e-01 + 0.0000e+00i
    -8.9227e-01 + 0.0000e+00i
    -2.3093e+03 + 0.0000e+00i
    -3.9549e-03 + 0.0000e+00i
```

Note that the natural frequency of the unstable closed-loop pole is given by stabmarg.CriticalFrequency:

stabmarg.CriticalFrequency

ans =

$5.8651 \mathrm{e}+00$

Connection with Mu Analysis

The structured singular value, or μ, is the mathematical tool used by robstab to compute the robust stability margin. If you are comfortable with structured singular value analysis, you can use the mussv function directly to compute mu as a function of frequency and reproduce the results above. The function mussv is the underlying engine for all robustness analysis commands.

To use mussv, we first extract the (M, Delta) decomposition of the uncertain closed-loop model ClosedLoop, where Delta is a block-diagonal matrix of (normalized) uncertain elements. The 3rd output argument of lftdata, BlkStruct, describes the blockdiagonal structure of Delta and can be used directly by mussv

```
[M,Delta,BlkStruct] = lftdata(ClosedLoop);
```

For robust stability analysis, only the channels of M associated with the uncertainty channels are used. Based on the row/column size of Delta, select the proper columns and rows of M. Remember that the rows of Delta correspond to the columns of M, and vice versa. Consequently, the column dimension of Delta is used to specify the rows of M:

```
szDelta = size(Delta);
M11 = M(1:szDelta(2),1:szDelta(1));
```

In its simplest form, mu-analysis is performed on a finite grid of frequencies. Pick a vector of logarithmically-spaced frequency points and evaluate the frequency response of M11 over this frequency grid.

```
omega = logspace(-1,2,50);
M11_g = frd(M11,omega);
```

Compute mu(M11) at these frequencies and plot the resulting lower and upper bounds:

```
mubnds = mussv(M11_g,BlkStruct,'s');
LinMagopt = bodeoptions;
```

```
LinMagopt.PhaseVisible = 'off'; LinMagopt.XLim = [1e-1 1e2]; LinMagopt.MagUnits = 'abs
bodeplot(mubnds(1,1),mubnds(1,2),LinMagopt);
xlabel('Frequency (rad/sec)');
ylabel('Mu upper/lower bounds');
title('Mu plot of robust stability margins (inverted scale)');
```


Figure 3: Mu plot of robust stability margins (inverted scale)
The robust stability margin is the reciprocal of the structured singular value. Therefore upper bounds from mussv become lower bounds on the stability margin. Make these conversions and find the destabilizing frequency where the mu upper bound peaks (that is, where the stability margin is smallest):

```
[pkl,wPeakLow] = getPeakGain(mubnds(1,2));
```

```
[pku] = getPeakGain(mubnds(1,1));
SMfromMU.LowerBound = 1/pku;
SMfromMU.UpperBound = 1/pkl;
SMfromMU.CriticalFrequency = wPeakLow;
```

Compare SMfromMU to the bounds stabmarg computed with robstab. The values are in rough agreement with robstab yielding slightly weaker margins. This is because robstab uses a more sophisticated approach than frequency gridding and can accurately compute the peak value of mu across frequency.

```
stabmarg
SMfromMU
```

```
stabmarg =
    struct with fields:
```

 LowerBound: 1.4673e+00
 UpperBound: \(1.4702 \mathrm{e}+00\)
 CriticalFrequency: \(5.8651 \mathrm{e}+00\)
 SMfromMU =
struct with fields:
LowerBound: 1.4746e+00
UpperBound: 1.4748e+00
CriticalFrequency: $5.9636 \mathrm{e}+00$

Robust Performance Analysis

For the nominal values of the uncertain elements k and delta, the closed-loop gain is less than 1:
getPeakGain(ClosedLoop.NominalValue)
ans =
9.8040e-01

This says that the controller K meets the disturbance rejection and noise insensitivity goals. But is this nominal performance maintained in the face of the modeled uncertainty? This question is best answered with robgain.

```
opt = robOptions('Display','on');
[perfmarg,wcu] = robgain(ClosedLoop,1,opt);
Computing peak... Percent completed: 100/100
The performance level 1 is not robust to the modeled uncertainty.
    -- The gain remains below 1 for up to 39.9% of the modeled uncertainty.
    -- There is a bad perturbation amounting to 39.9% of the modeled uncertainty.
    -- This perturbation causes a gain of 1 at the frequency 0.134 rad/seconds.
```

The answer is negative: robgain found a perturbation amounting to only 40% of the specified uncertainty that drives the closed-loop gain to 1 .

```
getPeakGain(usubs(ClosedLoop,wcu),1e-6)
```

ans =
$1.0000 \mathrm{e}+00$

This suggests that the closed-loop gain will exceed 1 for 100% of the specified uncertainty. This is confirmed by computing the worst-case gain:

```
wcg = wcgain(ClosedLoop)
wcg =
    struct with fields:
        LowerBound: 1.5714e+00
        UpperBound: 1.5749e+00
        CriticalFrequency: 5.9579e+00
```

The worst-case gain is about 1.6. This analysis shows that while the controller K meets the disturbance rejection and noise insensitivity goals for the nominal plant, it is unable to maintain this level of performance for the specified level of plant uncertainty.

```
See Also
mussv | robgain | robstab | wcgain
```


Related Examples

- "Getting Reliable Estimates of Robustness Margins" on page 2-17

More About

- "Robustness and Worst-Case Analysis" on page 2-2

Getting Reliable Estimates of Robustness Margins

This example illustrates the pitfalls of using frequency gridding to compute robustness margins for systems with only real uncertain parameters. It presents a safer approach along with ways to mitigate discontinuities in the structured singular value μ.

How Discontinuities Can Hide Robustness Issues

Consider a spring-mass-damper system with 100% parameter uncertainty in the damping coefficient and 0% uncertainty in the spring coefficient. Note that all uncertainty is of ureal type.

```
m = 1;
k = 1;
c = ureal('c',1,'plusminus',1);
sys = tf(1,[m c k]);
```

As the uncertain element c varies, the only place where the poles can migrate from stable to unstable is at $\mathrm{s}=\mathrm{j}^{*} 1(1 \mathrm{rad} / \mathrm{sec})$. No amount of variation in c can cause them to migrate across the jw-axis at any other frequency. As a result, the robust stability margin is infinite at all frequencies except $1 \mathrm{rad} / \mathrm{s}$, where the margin with respect to the specified uncertainty is 1 . In other words, the robust stability margin and the underlying structured singular value μ are discontinuous as a function of frequency.

The traditional approach to computing the robust stability margin is to pick a frequency grid and compute lower and upper bounds for μ at each frequency point. Under most conditions, the robust stability margin is continuous with respect to frequency and this approach gives good estimates provided you use a sufficiently dense frequency grid. However in problems with only ureal uncertainty, such as the example above, poles can migrate from stable to unstable only at specific frequencies (the points of discontinuity for ${ }^{\mu}$), so any frequency grid that excludes these particular frequencies will lead to overoptimistic stability margins.

To see this effect, pick a frequency grid for the spring-mass-damper system above and compute the robust stability margins at these frequency points using robstab.

```
omega = logspace(-1,1,40); % one possible grid
[stabmarg,wcu,info] = robstab(sys,omega);
stabmarg
```

```
stabmarg =
    struct with fields:
    LowerBound: 5.0348e+03
            UpperBound: Inf
    CriticalFrequency: 0.1000
```

The field info. Bounds gives the margin lower and upper bounds at each frequency. Verify that the lower bound (the guaranteed margin) is large at all frequencies.
loglog(omega,info.Bounds(:,1)) title('Robust stability margin: 40 frequency points')

Robust stability margin: $\mathbf{4 0}$ frequency points

Note that making the grid denser would not help. Only by adding $f=1$ to the grid will we find the true margin.

```
f = 1;
stabmarg = robstab(sys,f)
stabmarg =
    struct with fields:
```

 LowerBound: 1.0000
 UpperBound: 1
 CriticalFrequency: 1

Safe Computation of Robustness Margins

Rather than specifying a frequency grid, apply robstab directly to the USS model sys. This uses a more advanced algorithm that is guaranteed to find the peak of μ even in the presence of a discontinuity. This approach is more accurate and often faster than frequency gridding.

```
[stabmarg,wcu] = robstab(sys)
```

```
stabmarg =
```

 struct with fields:
 LowerBound: 1.0000
 UpperBound: 1.0000
 CriticalFrequency: 1.0000
 wcu =
struct with fields:
c: 2.2204e-16

This computes the correct robust stability margin (1), identifies the critical frequency ($f=1$), and finds the smallest destabilizing perturbation (setting $c=0$, as expected).

Modifying the Uncertainty Model to Eliminate Discontinuities

The example above shows that the robust stability margin can be a discontinuous function of frequency. In other words, it can have jumps. We can eliminate such jumps by adding a small amount of uncertain dynamics to every uncertain real parameter. This amounts to adding some dynamics to pure gains. Importantly, as the size of the added dynamics goes to zero, the estimated margin for the modified problem converges to the true margin for the original problem.

In the spring-mass-damper example, we model c as a ureal with the range [0.05,1.95] rather than $[0,2]$, and add a ultidyn perturbation with gain bounded by 0.05 . This combination covers the original uncertainty in C and introduces only 5% conservatism.

```
cc = ureal('cReal',1,'plusminus',0.95) + ultidyn('cUlti',[1 1],'Bound',0.05);
sysreg = usubs(sys,'c',cc);
```

Recompute the robust stability margin over the frequency grid omega.

```
[stabmarg,~,info] = robstab(sysreg,omega);
stabmarg
stabmarg =
    struct with fields:
```

 LowerBound: 2.3629
 UpperBound: 2.3630
 CriticalFrequency: 0.9427
 Now the frequency-gridded calculation yields a margin of 2.36. This is still greater than 1 (the true margin) because the density of frequency points is not high enough. Increase the number of points from 40 to 200 and recompute the margin.

```
OmegaDense = logspace(-1,1,200);
[stabmarg,~,info] = robstab(sysreg,OmegaDense);
stabmarg
stabmarg =
    struct with fields:
```

LowerBound: 1.0026

UpperBound: 1.0056
CriticalFrequency: 0.9885

Plot the robustness margin as a function of frequency.

```
loglog(OmegaDense,info.Bounds(:,1),OmegaDense,info.Bounds(:, 2))
title('Robust stability margin: 5% added dynamics, 200 frequency points')
legend('Lower bound','Upper bound')
```


The computed margin is now close to 1 , the true margin for the original problem. In general, the stability margin of the modified problem is less than or equal to that of the original problem. If it is significantly less, then the answer to the question "What is the stability margin?" is very sensitive to the uncertainty model. In this case, we put more
faith in the value that allows for a few percents of unmodeled dynamics. Either way, the stability margin for the modified problem is more trustworthy.

Automated Regularization of Discontinuous Problems

The command complexify automates the procedure of replacing a ureal with the sum of a ureal and ultidyn. The analysis above can be repeated using complexify obtaining the same results.

```
sysreg = complexify(sys,0.05,'ultidyn');
[stabmarg,~,info] = robstab(sysreg,OmegaDense);
stabmarg
```

```
stabmarg =
```

stabmarg =
struct with fields:
struct with fields:
LowerBound: 1.0026
UpperBound: 1.0056
CriticalFrequency: 0.9885

```

Note that such regularization is only needed when using frequency gridding. Applying robstab directly to the original uncertain model sys yields the correct margin without frequency gridding or need for regularization.

\section*{References}

The continuity of the robust stability margin, and the subsequent computational and interpretational difficulties raised by the presence of discontinuities are considered in [1]. The consequences and interpretations of the regularization illustrated in this small example are described in [2]. An extensive analysis of regularization for 2-parameter example is given in [2].
[1] Barmish, B.R., Khargonekar, P.P, Shi, Z.C., and R. Tempo, "Robustness margin need not be a continuous function of the problem data," Systems \& Control Letters, Vol. 15, No. 2, 1990, pp. 91-98.
[2] Packard, A., and P. Pandey, "Continuity properties of the real/complex structured singular value," Vol. 38, No. 3, 1993, pp. 415-428.

\section*{See Also}
robstab

\section*{Related Examples}
- "Robust Stability, Robust Performance and Mu Analysis" on page 2-7

\section*{More About}
- "Robustness and Worst-Case Analysis" on page 2-2

\title{
Introduction to Linear Matrix Inequalities
}
- "Linear Matrix Inequalities" on page 3-2
- "LMIs and LMI Problems" on page 3-4
- "LMI Applications" on page 3-6
- "Further Mathematical Background" on page 3-10
- "Bibliography" on page 3-11

\section*{Linear Matrix Inequalities}

Linear Matrix Inequalities (LMIs) and LMI techniques have emerged as powerful design tools in areas ranging from control engineering to system identification and structural design. Three factors make LMI techniques appealing:
- A variety of design specifications and constraints can be expressed as LMIs.
- Once formulated in terms of LMIs, a problem can be solved exactly by efficient convex optimization algorithms (see "LMI Solvers" on page 4-23).
- While most problems with multiple constraints or objectives lack analytical solutions in terms of matrix equations, they often remain tractable in the LMI framework. This makes LMI-based design a valuable alternative to classical "analytical" methods.

See [9] for a good introduction to LMI concepts. Robust Control Toolbox \({ }^{\mathrm{TM}}\) software is designed as an easy and progressive gateway to the new and fast-growing field of LMIs:
- For users who occasionally need to solve LMI problems, the LMI Editor and the tutorial introduction to LMI concepts and LMI solvers provide for quick and easy problem solving.
- For more experienced LMI users, LMI Lab, offers a rich, flexible, and fully programmable environment to develop customized LMI-based tools.

\section*{LMI Features}

Robust Control Toolbox LMI functionality serves two purposes:
- Provide state-of-the-art tools for the LMI-based analysis and design of robust control systems
- Offer a flexible and user-friendly environment to specify and solve general LMI problems (the LMI Lab)

Examples of LMI-based analysis and design tools include
- Functions to analyze the robust stability and performance of uncertain systems with varying parameters (popov, quadstab, quadperf ...)
- Functions to design robust control with a mix of \(\mathrm{H}_{2}, \mathrm{H}_{\infty}\), and pole placement objectives (h2hinfsyn)
- Functions for synthesizing robust gain-scheduled \(\mathrm{H}_{\infty}\) controllers (hinfgs)

For users interested in developing their own applications, the LMI Lab provides a general-purpose and fully programmable environment to specify and solve virtually any LMI problem. Note that the scope of this facility is by no means restricted to controloriented applications.

Note Robust Control Toolbox software implements state-of-the-art interior-point LMI solvers. While these solvers are significantly faster than classical convex optimization algorithms, you should keep in mind that the complexity of LMI computations can grow quickly with the problem order (number of states). For example, the number of operations required to solve a Riccati equation is \(o\left(n^{3}\right)\) where \(n\) is the state dimension, while the cost of solving an equivalent "Riccati inequality" LMI is o \(\left(\mathrm{n}^{6}\right)\).

\section*{More About}
- "LMIs and LMI Problems" on page 3-4

\section*{LMIs and LMI Problems}
\(A\) linear matrix inequality (LMI) is any constraint of the form
\(A(x):=A_{0}+x_{1} A_{1}+\ldots+x_{N} A_{N}<0\)
where
- \(x=\left(x_{1}, \ldots, x_{N}\right)\) is a vector of unknown scalars (the decision or optimization variables)
- \(A_{0}, \ldots, A_{N}\) are given symmetric matrices
- < 0 stands for "negative definite," i.e., the largest eigenvalue of \(A(x)\) is negative

Note that the constraints \(A(x)>0\) and \(A(x)<B(x)\) are special cases of Equation 3-1 since they can be rewritten as \(-A(x)<0\) and \(A(x)-B(x)<0\), respectively.

The LMI of Equation 3-1 is a convex constraint on \(x\) since \(A(y)<0\) and \(A(z)<0\) imply that \(A\left(\frac{y+z}{2}\right)<0\). As a result,
- Its solution set, called the feasible set, is a convex subset of \(R^{N}\)
- Finding a solution \(x\) to Equation 3-1, if any, is a convex optimization problem.

Convexity has an important consequence: even though Equation 3-1 has no analytical solution in general, it can be solved numerically with guarantees of finding a solution when one exists. Note that a system of LMI constraints can be regarded as a single LMI since
\[
\left\{\begin{array}{c}
A_{1}(x)<0 \\
\vdots \\
A_{K}(x)<0
\end{array}\right.
\]
is equivalent to
\[
A(x):=\operatorname{diag}\left(\mathrm{A}_{1}(x), \ldots, \mathrm{A}_{\mathrm{K}}(x)\right)<0
\]
where \(\operatorname{diag}\left(A_{1}(x), \ldots, A_{\mathrm{K}}(x)\right)\) denotes the block-diagonal matrix with
\(A_{1}(x), \ldots, A_{\mathrm{K}}(x)\) on its diagonal. Hence multiple LMI constraints can be imposed on the vector of decision variables \(x\) without destroying convexity.

In most control applications, LMIs do not naturally arise in the canonical form of Equation 3-1, but rather in the form
\(L\left(X_{1}, \ldots, X_{\mathrm{n}}\right)<R\left(X_{1}, \ldots, X_{\mathrm{n}}\right)\)
where \(L(\).\() and R(\).\() are affine functions of some structured matrix variables X_{1}, \ldots, X_{\mathrm{n}}\). \(A\) simple example is the Lyapunov inequality
\(A^{T} X+X A<0\)
where the unknown \(X\) is a symmetric matrix. Defining \(x_{1}, \ldots, x_{\mathrm{N}}\) as the independent scalar entries of \(X\), this LMI could be rewritten in the form of Equation 3-1. Yet it is more convenient and efficient to describe it in its natural form Equation 3-2, which is the approach taken in the LMI Lab.

\section*{Related Examples}
- "LMI Applications" on page 3-6

\section*{LMI Applications}

Finding a solution \(x\) to the LMI system
\(A(x)<0\)
is called the feasibility problem. Minimizing a convex objective under LMI constraints is also a convex problem. In particular, the linear objective minimization problem:

Minimize \(c^{T} x\) subject to
\(A(x)<0\)
plays an important role in LMI-based design. Finally, the generalized eigenvalue minimization problem

Minimize \(\lambda\) subject to
\(A(x)<\lambda B(x)\)
\(B(x)>0\)
\(C(x)>0\)
is quasi-convex and can be solved by similar techniques. It owes its name to the fact that is related to the largest generalized eigenvalue of the pencil \((A(x), B(x))\).

Many control problems and design specifications have LMI formulations [9]. This is especially true for Lyapunov-based analysis and design, but also for optimal LQG control, \(H^{\circ}\) control, covariance control, etc. Further applications of LMIs arise in estimation, identification, optimal design, structural design [6], [7], matrix scaling problems, and so on. The main strength of LMI formulations is the ability to combine various design constraints or objectives in a numerically tractable manner.

A nonexhaustive list of problems addressed by LMI techniques includes the following:
- Robust stability of systems with LTI uncertainty ( \(\mu\)-analysis) ([24], [21], [27])
- Robust stability in the face of sector-bounded nonlinearities (Popov criterion) ([22], [28], [13], [16])
- Quadratic stability of differential inclusions ([15], [8])
- Lyapunov stability of parameter-dependent systems ([12])
- Input/state/output properties of LTI systems (invariant ellipsoids, decay rate, etc.) ([9])
- Multi-model/multi-objective state feedback design ([4], [17], [3], [9], [10])
- Robust pole placement
- Optimal LQG control ([9])
- Robust \(H^{\infty}\) control ([11], [14])
- Multi-objective \(H^{\circ}\) synthesis ([18], [23], [10], [18])
- Design of robust gain-scheduled controllers ([5], [2])
- Control of stochastic systems ([9])
- Weighted interpolation problems ([9])

To hint at the principles underlying LMI design, let's review the LMI formulations of a few typical design objectives.

\section*{Stability}

The stability of the dynamic system
\[
\dot{x}=A x
\]
is equivalent to the feasibility of the following problem:
Find \(P=P^{T}\) such that \(A^{T} P+P A<0, P>I\).
This can be generalized to linear differential inclusions (LDI)
\[
\dot{x}=A(t) x
\]
where \(A(t)\) varies in the convex envelope of a set of LTI models:
\[
A(t) \in C o\left\{A_{1}, \ldots, A_{n}\right\}=\left\{\sum_{i=1}^{n} a_{i} A_{i}: a_{i} \geq 0, \sum_{i=1}^{N} a_{i}=1\right\} .
\]

A sufficient condition for the asymptotic stability of this LDI is the feasibility of Find \(P=P^{T}\) such that \(A_{i}^{T} P+P A_{i}<0, \quad P>I\).

\section*{RMS Gain}

The random-mean-squares (RMS) gain of a stable LTI system
\[
\left\{\begin{array}{l}
\dot{x}=A x+B u \\
y=C x+D u
\end{array}\right.
\]
is the largest input/output gain over all bounded inputs \(u(t)\). This gain is the global minimum of the following linear objective minimization problem [1], [25], [26].

Minimize \(Y\) over \(X=X^{\mathrm{T}}\) and Y such that
\[
\left(\begin{array}{ccc}
A^{T} X+X A & X B & C^{T} \\
B^{T} X & -\gamma I & D^{T} \\
C & D & -\gamma I
\end{array}\right)<0
\]
and
\[
X>0
\]

\section*{LQG Performance}

For a stable LTI system
\[
G\left\{\begin{array}{l}
\dot{x}=A x+B w \\
y=C x
\end{array}\right.
\]
where \(w\) is a white noise disturbance with unit covariance, the LQG or \(H_{2}\) performance \(\|G\|_{2}\) is defined by
\[
\begin{aligned}
\|G\|_{2}^{2} & :=\lim _{T \rightarrow \infty} E\left\{\frac{1}{T} \int_{0}^{T} y^{T}(t) y(t) d t\right\} \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} G^{H}(j \omega) G(j \omega) d \omega
\end{aligned}
\]

It can be shown that
\[
\|G\|_{2}^{2}=\inf \left\{\operatorname{Trace}\left(\mathrm{CPC}^{T}\right): A P+P A^{T}+B B^{T}<0\right\} .
\]

Hence \(\|G\|_{2}^{2}\) is the global minimum of the LMI problem. Minimize Trace \((Q)\) over the symmetric matrices \(P, Q\) such that
\[
A P+P A^{T}+B B^{T}<0
\]
and
\[
\left(\begin{array}{cc}
Q & C P \\
P C^{T} & P
\end{array}\right)>0 .
\]

Again this is a linear objective minimization problem since the objective Trace \((Q)\) is linear in the decision variables (free entries of \(P, Q\) ).

\section*{More About}
- "Tools for Specifying and Solving LMIs" on page 4-2

\section*{Further Mathematical Background}

Efficient interior-point algorithms are now available to solve the three generic LMI problems Equation 3-2-Equation 3-4 defined in "LMI Applications" on page 3-6. These algorithms have a polynomial-time complexity. That is, the number \(N(\varepsilon)\) of flops needed to compute an \(\varepsilon\)-accurate solution is bounded by
\(M N^{3} \log (V / \varepsilon)\)
where \(M\) is the total row size of the LMI system, \(N\) is the total number of scalar decision variables, and \(V\) is a data-dependent scaling factor. Robust Control Toolbox software implements the Projective Algorithm of Nesterov and Nemirovski [20], [19]. In addition to its polynomial-time complexity, this algorithm does not require an initial feasible point for the linear objective minimization problem Equation 3-3or the generalized eigenvalue minimization problem Equation 3-4.

Some LMI problems are formulated in terms of inequalities rather than strict inequalities. For instance, a variant of Equation 3-3 is

Minimize \(c^{T} x\) subject to \(A(x)<0\).
While this distinction is immaterial in general, it matters when \(A(x)\) can be made negative semi-definite but not negative definite. A simple example is:

Minimize \(c^{T} x\) subject to \(\left(\begin{array}{ll}x & x \\ x & x\end{array}\right) \geq 0\).

Such problems cannot be handled directly by interior-point methods which require strict feasibility of the LMI constraints. A well-posed reformulation of Equation 3-5 would be

Minimize \(c^{T} x\) subject to \(x \geq 0\).
Keeping this subtlety in mind, we always use strict inequalities in this manual.

\section*{Related Examples}
- "LMI Applications" on page 3-6

\section*{Bibliography}
[1] Anderson, B.D.O., and S. Vongpanitlerd, Network Analysis, Prentice-Hall, Englewood Cliffs, 1973.
[2] Apkarian, P., P. Gahinet, and G. Becker, "Self-Scheduled \(H^{\circ}\) Control of Linear Parameter-Varying Systems," Proc. Amer. Contr. Conf., 1994, pp. 856-860.
[3] Bambang, R., E. Shimemura, and K. Uchida, "Mixed \(H_{2} / H^{\circ}\) Control with Pole Placement," State-Feedback Case, Proc. Amer. Contr. Conf., 1993, pp. 2777-2779.
[4] Barmish, B.R., "Stabilization of Uncertain Systems via Linear Control," IEEE Trans. Aut. Contr., AC-28 (1983), pp. 848-850.
[5] Becker, G., and Packard, P., "Robust Performance of Linear-Parametrically Varying Systems Using Parametrically-Dependent Linear Feedback," Systems and Control Letters, 23 (1994), pp. 205-215.
[6] Bendsoe, M.P., A. Ben-Tal, and J. Zowe, "Optimization Methods for Truss Geometry and Topology Design," to appear in Structural Optimization.
[7] Ben-Tal, A., and A. Nemirovski, "Potential Reduction Polynomial-Time Method for Truss Topology Design," to appear in SIAM J. Contr. Opt.
[8] Boyd, S., and Q. Yang, "Structured and Simultaneous Lyapunov Functions for System Stability Problems," Int. J. Contr., 49 (1989), pp. 2215-2240.
[9] Boyd, S., L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory, SIAM books, Philadelphia, 1994.
[10] Chilali, M., and P. Gahinet, " \(H^{\circ}\) Design with Pole Placement Constraints: an LMI Approach," to appear in IEEE Trans. Aut. Contr. Also in Proc. Conf. Dec. Contr., 1994, pp. 553-558.
[11] Gahinet, P., and P. Apkarian, "A Linear Matrix Inequality Approach to \(H^{\circ}\) Control," Int. J. Robust and Nonlinear Contr., 4 (1994), pp. 421-448.
[12] Gahinet, P., P. Apkarian, and M. Chilali, "Affine Parameter-Dependent Lyapunov Functions for Real Parametric Uncertainty," Proc. Conf. Dec. Contr., 1994, pp. 2026-2031.
[13] Haddad, W.M., and D.S. Berstein, "Parameter-Dependent Lyapunov Functions, Constant Real Parameter Uncertainty, and the Popov Criterion in Robust Analysis and Synthesis: Part 1 and 2," Proc. Conf. Dec. Contr., 1991, pp. 2274-2279 and 2632-2633.
[14] Iwasaki, T., and R.E. Skelton, "All Controllers for the General \(H^{\circ}\) Control Problem: LMI Existence Conditions and State-Space Formulas," Automatica, 30 (1994), pp. 1307-1317.
[15] Horisberger, H.P., and P.R. Belanger, "Regulators for Linear Time-Varying Plants with Uncertain Parameters," IEEE Trans. Aut. Contr., AC-21 (1976), pp. 705-708.
[16] How, J.P., and S.R. Hall, "Connection between the Popov Stability Criterion and Bounds for Real Parameter Uncertainty," Proc. Amer. Contr. Conf., 1993, pp. 1084-1089.
[17] Khargonekar, P.P., and M.A. Rotea, "Mixed \(H_{2} / H^{\circ}\) Control: a Convex Optimization Approach," IEEE Trans. Aut. Contr., 39 (1991), pp. 824-837.
[18] Masubuchi, I., A. Ohara, and N. Suda, "LMI-Based Controller Synthesis: A Unified Formulation and Solution," submitted to Int. J. Robust and Nonlinear Contr., 1994.
[19] Nemirovski, A., and P. Gahinet, "The Projective Method for Solving Linear Matrix Inequalities," Proc. Amer. Contr. Conf., 1994, pp. 840-844.
[20] Nesterov, Yu, and A. Nemirovski, Interior Point Polynomial Methods in Convex Programming: Theory and Applications, SIAM Books, Philadelphia, 1994.
[21] Packard, A., and J.C. Doyle, "The Complex Structured Singular Value," Automatica, 29 (1994), pp. 71-109.
[22] Popov, V.M., "Absolute Stability of Nonlinear Systems of Automatic Control," Automation and Remote Control, 22 (1962), pp. 857-875.
[23] Scherer, C., "Mixed \(H_{2} H^{\circ}\) Control," to appear in Trends in Control: A European Perspective, volume of the special contributions to the ECC 1995.
[24] Stein, G., and J.C. Doyle, "Beyond Singular Values and Loop Shapes," J. Guidance, 14 (1991), pp. 5-16.
[25] Vidyasagar, M., Nonlinear System Analysis, Prentice-Hall, Englewood Cliffs, 1992.
[26] Willems, J.C., "Least-Squares Stationary Optimal Control and the Algebraic Riccati Equation," IEEE Trans. Aut. Contr., AC-16 (1971), pp. 621-634.
[27] Young, P.M., M.P. Newlin, and J.C. Doyle, "Let's Get Real," in Robust Control Theory, Springer Verlag, 1994, pp. 143-174.
[28] Zames, G., "On the Input-Output Stability of Time-Varying Nonlinear Feedback Systems, Part I and II," IEEE Trans. Aut. Contr., AC-11 (1966), pp. 228-238 and 465-476.

\section*{LMI Lab}
- "Tools for Specifying and Solving LMIs" on page 4-2
- "Specifying a System of LMIs" on page 4-7
- "Specify LMI System at the Command Line" on page 4-9
- "Specify LMIs with the LMI Editor GUI" on page 4-17
- "How lmivar and lmiterm Manage LMI Representation" on page 4-21
- "Querying the LMI System Description" on page 4-22
- "LMI Solvers" on page 4-23
- "Minimize Linear Objectives under LMI Constraints" on page 4-25
- "Conversion Between Decision and Matrix Variables" on page 4-29
- "Validating Results" on page 4-30
- "Modify a System of LMIs" on page 4-31
- "Advanced LMI Techniques" on page 4-34
- "Bibliography" on page 4-45

\section*{Tools for Specifying and Solving LMIs}

The LMI Lab is a high-performance package for solving general LMI problems. It blends simple tools for the specification and manipulation of LMIs with powerful LMI solvers for three generic LMI problems. Thanks to a structure-oriented representation of LMIs, the various LMI constraints can be described in their natural block-matrix form. Similarly, the optimization variables are specified directly as matrix variables with some given structure. Once an LMI problem is specified, it can be solved numerically by calling the appropriate LMI solver. The three solvers feasp, mincx, and gevp constitute the computational engine of the LMI portion of Robust Control Toolbox software. Their high performance is achieved through C-MEX implementation and by taking advantage of the particular structure of each LMI.

The LMI Lab offers tools to
- Specify LMI systems either symbolically with the LMI Editor or incrementally with the lmivar and lmiterm commands
- Retrieve information about existing systems of LMIs
- Modify existing systems of LMIs
- Solve the three generic LMI problems (feasibility problem, linear objective minimization, and generalized eigenvalue minimization)
- Validate results

This chapter gives a tutorial introduction to the LMI Lab as well as more advanced tips for making the most out of its potential.

\section*{Some Terminology}

Any linear matrix inequality can be expressed in the canonical form \(L(x)=L_{0}+x_{1} L_{1}+\ldots+x_{N} L_{N}<0\)
where
- \(L_{0}, L_{1}, \ldots, L_{N}\) are given symmetric matrices
- \(x=\left(x_{1}, \ldots, x_{N}\right)^{T} \in R^{N}\) is the vector of scalar variables to be determined. We refer to \(x_{1}, \ldots, x_{N}\) as the decision variables. The names "design variables" and "optimization variables" are also found in the literature.

Even though this canonical expression is generic, LMIs rarely arise in this form in control applications. Consider for instance the Lyapunov inequality
\[
A^{T} X+X A<0
\]
where
\[
A=\left(\begin{array}{cc}
-1 & 2 \\
0 & -2
\end{array}\right)
\]
and the variable
\[
X=\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{2} & x_{3}
\end{array}\right)
\]
is a symmetric matrix. Here the decision variables are the free entries \(x_{1}, x_{2}, x_{3}\) of \(X\) and the canonical form of this LMI reads
\[
x_{1}\left(\begin{array}{cc}
-2 & 2 \\
2 & 0
\end{array}\right)+x_{2}\left(\begin{array}{cc}
0 & -3 \\
-3 & 4
\end{array}\right)+x_{3}\left(\begin{array}{cc}
0 & 0 \\
0 & -4
\end{array}\right)<0
\]

Clearly this expression is less intuitive and transparent than Equation 4-1. Moreover, the number of matrices involved in Equation 4-2 grows roughly as \(n^{2} / 2\) if \(n\) is the size of the \(A\) matrix. Hence, the canonical form is very inefficient from a storage viewpoint since it requires storing o ( \(n^{2} / 2\) ) matrices of size \(n\) when the single \(n\)-by- \(n\) matrix \(A\) would be sufficient. Finally, working with the canonical form is also detrimental to the efficiency of the LMI solvers. For these various reasons, the LMI Lab uses a structured representation of LMIs. For instance, the expression \(A^{T} X+X A\) in the Lyapunov inequality Equation 4-1 is explicitly described as a function of the matrix variable \(X\), and only the \(A\) matrix is stored.

In general, LMIs assume a block matrix form where each block is an affine combination of the matrix variables. As a fairly typical illustration, consider the following LMI drawn from \(H^{\circ}\) theory
\(N^{T}\left(\begin{array}{ccc}A^{T} X+X A & X C^{T} & B \\ C X & -\gamma I & D \\ B^{T} & D^{T} & -\gamma I\end{array}\right) N<0\)
where \(A, B, C, D\), and \(N\) are given matrices and the problem variables are \(X=X^{T} \in R^{n \times n}\) and \(\gamma \in R\). We use the following terminology to describe such LMIs:
- \(N\) is called the outer factor, and the block matrix
\[
L(X, \gamma)=\left(\begin{array}{ccc}
A^{T} X+X A & X C^{T} & B \\
C X & -\gamma I & D \\
B^{T} & D^{T} & -\gamma I
\end{array}\right)
\]
is called the inner factor. The outer factor needs not be square and is often absent.
- \(X\) and Y are the matrix variables of the problem. Note that scalars are considered as 1-by-1 matrices.
- The inner factor \(L(X, \mathrm{Y})\) is a symmetric block matrix, its block structure being characterized by the sizes of its diagonal blocks. By symmetry, \(L(X, \mathrm{Y})\) is entirely specified by the blocks on or above the diagonal.
- Each block of \(L(X, \mathrm{Y})\) is an affine expression in the matrix variables \(X\) and Y . This expression can be broken down into a sum of elementary terms. For instance, the block \((1,1)\) contains two elementary terms: \(A^{T} X\) and \(X A\).
- Terms are either constant or variable. Constant terms are fixed matrices like \(B\) and \(D\) above. Variable terms involve one of the matrix variables, like \(X A, X C^{T}\), and \(-{ }^{\gamma} I\) above.

The LMI (Equation 4-3) is specified by the list of terms in each block, as is any LMI regardless of its complexity.

As for the matrix variables \(X\) and Y , they are characterized by their dimensions and structure. Common structures include rectangular unstructured, symmetric, skewsymmetric, and scalar. More sophisticated structures are sometimes encountered in control problems. For instance, the matrix variable \(X\) could be constrained to the blockdiagonal structure:
\[
X=\left(\begin{array}{c|cc}
x_{1} & 0 & 0 \\
\hline 0 & x_{2} & x_{3} \\
0 & x_{3} & x_{4}
\end{array}\right)
\]

Another possibility is the symmetric Toeplitz structure:
\[
X=\left(\begin{array}{lll}
x_{1} & x_{2} & x_{3} \\
x_{2} & x_{1} & x_{2} \\
x_{3} & x_{2} & x_{1}
\end{array}\right)
\]

Summing up, structured LMI problems are specified by declaring the matrix variables and describing the term content of each LMI. This term-oriented description is systematic and accurately reflects the specific structure of the LMI constraints. There is no built-in limitation on the number of LMIs that you can specify or on the number of blocks and terms in any given LMI. LMI systems of arbitrary complexity can therefore, be defined in the LMI Lab.

\section*{Overview of the LMI Lab}

The LMI Lab offers tools to specify, manipulate, and numerically solve LMIs. Its main purpose is to
- Allow for straightforward description of LMIs in their natural block-matrix form
- Provide easy access to the LMI solvers (optimization codes)
- Facilitate result validation and problem modification

The structure-oriented description of a given LMI system is stored as a single vector called the internal representation and generically denoted by LMISYS in the sequel. This vector encodes the structure and dimensions of the LMIs and matrix variables, a description of all LMI terms, and the related numerical data. It must be stressed that you need not attempt to read or understand the content of LMISYS since all manipulations involving this internal representation can be performed in a transparent manner with LMI-Lab tools.

The LMI Lab supports the following functionalities:

\section*{Specification of a System of LMIs}

LMI systems can be either specified as symbolic matrix expressions with the interactive graphical user interface lmiedit, or assembled incrementally with the two commands lmivar and lmiterm. The first option is more intuitive and transparent while the second option is more powerful and flexible.

\section*{Information Retrieval}

The interactive function lmiinfo answers qualitative queries about LMI systems created with lmiedit or lmivar and lmiterm. You can also use lmiedit to visualize the LMI system produced by a particular sequence of lmivar/lmiterm commands.

\section*{Solvers for LMI Optimization Problems}

General-purpose LMI solvers are provided for the three generic LMI problems defined in "LMI Applications" on page 3-6. These solvers can handle very general LMI systems and matrix variable structures. They return a feasible or optimal vector of decision variables \(x^{*}\). The corresponding values \(X_{1}^{*}, \ldots, X_{K}^{*}\) of the matrix variables are given by the function dec2mat.

\section*{Result Validation}

The solution \(x^{*}\) produced by the LMI solvers is easily validated with the functions evallmi and showlmi. This allows a fast check and/or analysis of the results. With evallmi, all variable terms in the LMI system are evaluated for the value \(x^{*}\) of the decision variables. The left and right sides of each LMI then become constant matrices that can be displayed with showlmi.

\section*{Modification of a System of LMIs}

An existing system of LMIs can be modified in two ways:
- An LMI can be removed from the system with dellmi.
- A matrix variable \(X\) can be deleted using delmvar. It can also be instantiated, that is, set to some given matrix value. This operation is performed by setmvar and allows, for example, to fix some variables and solve the LMI problem with respect to the remaining ones.

\section*{Related Examples}
- "Specifying a System of LMIs" on page 4-7

\section*{Specifying a System of LMIs}

The LMI Lab can handle any system of LMIs of the form
\(N^{T} L\left(X_{1}, \ldots, X_{K}\right) N<M T R\left(X_{1}, \ldots, X_{K}\right) M\)
where
- \(X_{1}, \ldots, X_{K}\) are matrix variables with some prescribed structure
- The left and right outer factors \(N\) and \(M\) are given matrices with identical dimensions
- The left and right inner factors \(L(\).\() and R(\).\() are symmetric block matrices with\) identical block structures, each block being an affine combination of \(X_{1}, \ldots, X_{K}\) and their transposes.

Note Throughout this chapter, "left side" refers to what is on the "smaller" side of the inequality, and "right side" to what is on the "larger" side. Accordingly, \(X\) is called the right-hand side and 0 the left side of the LMI
\(0<X\)
even when this LMI is written as \(X>0\).
The specification of an LMI system involves two steps:
1 Declare the dimensions and structure of each matrix variable \(X_{1}, \ldots, X_{K}\).
2 Describe the term content of each LMI.
This process creates the so-called internal representation of the LMI system. This computer description of the problem is used by the LMI solvers and in all subsequent manipulations of the LMI system. It is stored as a single vector called LMISYS.

There are two ways of generating the internal description of a given LMI system: (1) by a sequence of lmivar/lmiterm commands that build it incrementally, or (2) via the LMI Editor lmiedit where LMIs can be specified directly as symbolic matrix expressions. Though somewhat less flexible and powerful than the command-based description, the LMI Editor is more straightforward to use, hence particularly wellsuited for beginners. Thanks to its coding and decoding capabilities, it also constitutes a good tutorial introduction to lmivar and lmiterm. Accordingly, beginners may elect to skip the subsections on lmivar and lmiterm and to concentrate on the GUI-based specification of LMIs with lmiedit.

\section*{Related Examples}
- "Specify LMI System at the Command Line" on page 4-9
- "Specify LMIs with the LMI Editor GUI" on page 4-17

\section*{Specify LMI System at the Command Line}

This tutorial example shows how to specify LMI systems at the command line using the LMI Lab tools.

\section*{Specify LMI System}

Consider a stable transfer function,
\[
G(s)=C(s I-A)^{-1} B
\]

Suppose that \(G\) has four inputs, four outputs, and six states. Consider also a set of input/ output scaling matrices \(D\) with block-diagonal structure given by:
\[
D=\left(\begin{array}{cccc}
d_{1} & 0 & 0 & 0 \\
0 & d_{1} & 0 & 0 \\
0 & 0 & d_{2} & d_{3} \\
0 & 0 & d_{4} & d_{5}
\end{array}\right)
\]

The following problem arises in the robust stability analysis of systems with timevarying uncertainty [4]. Find, if any, a scaling \(D\) with the specified structure, such that the largest gain across frequency of \(D G(s) D^{-1}\) is less than 1 .

This problem has a simple LMI formulation: There exists an adequate scaling \(D\) if the following feasibility problem has solutions. Find two symmetric matrices \(X \in R_{6 \times 6}\) and \(S=D^{T} D \in R_{4 \times 4}\) such that:
\[
\begin{aligned}
& \left(\begin{array}{cc}
A^{T} X+X A+C^{T} S C & X B \\
B^{T} X & -S
\end{array}\right)<0 \\
& X>0 \\
& S>1
\end{aligned}
\]

You can use the LMI Editor to specify the LMI problem described by these expressions, as shown in "Specify LMIs with the LMI Editor GUI". Alternatively, define it at the command line using lmivar and lmiterm, as follows.

For this example, use the following values for \(A, B\), and \(C\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{\(\mathrm{A}=\) [} & -0.8715 & 0.5202 & 0.7474 & 1.0778 & -0.9686 & \(0.1005 ;\) \\
\hline & -0.5577 & -1.0843 & 1.8912 & 0.2523 & 1.0641 & -0.0345; \\
\hline & -0.2615 & -1.7539 & -1.5452 & -0.2143 & 0.0923 & -2.4192; \\
\hline & 0.6087 & -1.0741 & 0.1306 & -2.5575 & 2.3213 & 0.2388 ; \\
\hline & -0.7169 & 0.3582 & -1.4195 & 1.7043 & -2.6530 & -1.4276; \\
\hline & -1.2944 & -0.6752 & 1.6983 & 1.6764 & -0.3646 & -1.7730 ]; \\
\hline \multirow[t]{6}{*}{\(B=\) [} & [ 0 & 0.8998 & -0.2130 & 0.9835 ; & & \\
\hline & 0 & -0.3001 & 0 & -0.2977; & & \\
\hline & -1.0322 & 0 & -1.0431 & 1.1437; & & \\
\hline & 0 & -0.3451 & -0.2701 & -0.5316; & & \\
\hline & -0.4189 & 1.0128 & -0.4381 & 0 ; & & \\
\hline & 0 & 0 & -0.4087 & 0]; & & \\
\hline \multirow[t]{4}{*}{\(c=\) [} & 0 & 2.0034 & 0 & 1.0289 & 0.1554 & 0.7135; \\
\hline & 0.9707 & 0.9510 & 0.7059 & 1.4580 & -1.2371 & 0.3174 ; \\
\hline & 0 & 0 & 1.4158 & 0.0475 & -2.1935 & 0.4136 ; \\
\hline & -0.4383 & 0.6489 & -1.6045 & 1.7463 & -0.3334 & -0.5771]; \\
\hline
\end{tabular}

Define the LMI variables \(X\) and \(S\), and then specify the terms of each LMI.
```

setlmis([])
X = lmivar(1,[[6 1]);
S = lmivar(1,[2 0;2 1]);
% 1st LMI
lmiterm([[1 1 1 X X],1,A,'s');
lmiterm([$$
\begin{array}{llll}{1}&{1}&{1}&{S}\end{array}
$$],\mp@subsup{C}{}{\prime},C);
lmiterm([1 1 1 2 X],1,B);
lmiterm([1 2 2 S],-1,1);
% 2nd LMI
lmiterm([-2 1 1 1 X],1,1);
% 3rd LMI
lmiterm([[-3 1 1 S],1,1);
lmiterm([3 1 1 0],1);
LMISYS = getlmis;

```

The lmivar commands define the two matrix variables, \(X\) and \(S\). The lmiterm commands describe the terms in each LMI. getlmis returns the internal representation LMISYS of this LMI problem.

For more details on how to use these commands, see:
- "Initializing the LMI System"
- "Specifying the LMI Variables"
- "Specifying Individual LMIs"

For more information about how lmivar updates the internal representation of the LMI problem, see "How lmivar and lmiterm Manage LMI Representation".

\section*{Initializing the LMI System}

The description of an LMI system should begin with setlmis and end with getlmis. The function setlmis initializes the LMI system description. When specifying a new system, type
setlmis([])
To add on to an existing LMI system with internal representation LMISO, type
setlmis(LMISO)

\section*{Specifying the LMI Variables}

The matrix variables are declared one at a time with lmivar and are characterized by their structure. To facilitate the specification of this structure, the LMI Lab offers two predefined structure types along with the means to describe more general structures:
\begin{tabular}{|c|l|}
\hline Type 1 & \begin{tabular}{l} 
Symmetric block diagonal structure. This corresponds to matrix \\
variables of the form
\end{tabular} \\
& \(\left.\begin{array}{cccc}D_{1} & 0 & \ldots & 0 \\
0 & D_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & D_{r}\end{array}\right)\) \\
& \begin{tabular}{l} 
where each diagonal block \(D_{j}\) is square and is either zero, a full \\
symmetric matrix, or a scalar matrix
\end{tabular} \\
\(D_{j}=d \times I, d \in R\) \\
& \begin{tabular}{l} 
This type encompasses ordinary symmetric matrices (single block) \\
and scalar variables (one block of size one).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Type 2 & \begin{tabular}{l} 
Rectangular structure. This corresponds to arbitrary rectangular \\
matrices without any particular structure.
\end{tabular} \\
\hline Type 3 & \begin{tabular}{l} 
General structures. This third type is used to describe more \\
sophisticated structures and/or correlations between the matrix \\
variables. The principle is as follows: each entry of \(X\) is specified \\
independently as either 0, \(x\) n, or \(-x \mathrm{n}\) where \(x \mathrm{n}\) denotes the \(n\)-th \\
decision variable in the problem. For details on how to use Type 3, \\
see "Structured Matrix Variables" on page 4-34 as well as the \\
lmivar entry in the reference pages.
\end{tabular} \\
\hline
\end{tabular}

In "Specify LMI System" on page 4-9, the matrix variables \(X\) and \(S\) are of Type 1 . Indeed, both are symmetric and \(S\) inherits the block-diagonal structure of \(D\). Specifically, \(S\) is of the form
\[
S=\left(\begin{array}{cccc}
s_{1} & 0 & 0 & 0 \\
0 & s_{1} & 0 & 0 \\
0 & 0 & s_{2} & s_{3} \\
0 & 0 & s_{3} & s_{4}
\end{array}\right)
\]

Initialize the description and declare these two matrix variables.
```

setlmis([])
lmivar(1,[6 1]); % X
lmivar(1,[2 0;2 1]); % S

```

In both lmivar commands, the first input specifies the structure type and the second input contains additional information about the structure of the variable:
- For a matrix variable \(X\) of Type 1 , this second input is a matrix with two columns and as many rows as diagonal blocks in \(X\). The first column lists the sizes of the diagonal blocks and the second column specifies their nature with the following convention:

1: full symmetric block
0: scalar block
-1: zero block
In the second command, for instance, [2 0;2 1] means that \(S\) has two diagonal blocks, the first one being a 2 -by- 2 scalar block and the second one a 2 -by- 2 full block.
- For matrix variables of Type 2, the second input of lmivar is a two-entry vector listing the row and column dimensions of the variable. For instance, a 3-by-5 rectangular matrix variable would be defined by
```

lmivar(2,[3 5])

```

For convenience, lmivar also returns a "tag" that identifies the matrix variable for subsequent reference. For instance, \(X\) and \(S\) in "Specify LMI System" on page 4-9 could be defined by
```

X = lmivar(1,[6 1]);
S = lmivar(1,[2 0;2 1]);

```

The identifiers \(X\) and \(S\) are integers corresponding to the ranking of \(X\) and \(S\) in the list of matrix variables (in the order of declaration). Here their values would be \(X=1\) and \(S=2\). Note that these identifiers still point to \(X\) and \(S\) after deletion or instantiation of some of the matrix variables. Finally, lmivar can also return the total number of decision variables allocated so far as well as the entry-wise dependence of the matrix variable on these decision variables (see the lmivar entry in the reference pages for more details).

\section*{Specifying Individual LMIs}

After declaring the matrix variables with lmivar, we are left with specifying the term content of each LMI. Recall that LMI terms fall into three categories:
- The constant terms, i.e., fixed matrices like \(I\) in the left side of the LMI \(S>I\).
- The variable terms, i.e., terms involving a matrix variable. For instance, \(A^{\mathrm{T}} X\) and \(C^{\mathrm{T}} S C\) in the expression:
\[
\left(\begin{array}{cc}
A^{T} X+X A+C^{T} S C & X B \\
B^{T} X & -S
\end{array}\right)<0
\]

Variable terms are of the form \(P X Q\) where \(X\) is a variable and \(P, Q\) are given matrices called the left and right coefficients, respectively.
- The outer factors.

When describing the term content of an LMI, specify only the terms in the blocks on or above the diagonal. The inner factors being symmetric, this is sufficient to specify the entire LMI. Specifying all blocks results in the duplication of off-diagonal terms, hence in
the creation of a different LMI. Alternatively, you can describe the blocks on or below the diagonal.

LMI terms are specified one at a time with lmiterm. For instance, the LMI
\[
\left(\begin{array}{cc}
A^{T} X+X A+C^{T} S C & X B \\
B^{T} X & -S
\end{array}\right)<0
\]
is described by
```

lmiterm([[1 1 1 1 1],1,A,'s');
lmiterm([[1 1 1 1 2 2],C',C);
lmiterm([[1 1 1 2 1],1,B);
lmiterm([1 2 2 2],-1,1);

```

These commands successively declare the terms \(A^{T} X+X A, C^{T} S C, X B\), and \(-S\). In each command, the first argument is a four-entry vector listing the term characteristics as follows:
- The first entry indicates to which LMI the term belongs. The value \(m\) means "left side of the \(m\)-th LMI," and -m means "right side of the \(m\)-th LMI."
- The second and third entries identify the block to which the term belongs. For instance, the vector [llll \(\left.\begin{array}{llll}1 & 1 & 2 & 1\end{array}\right]\) indicates that the term is attached to the \((1,2)\) block.
- The last entry indicates which matrix variable is involved in the term. This entry is 0 for constant terms, k for terms involving the \(k\)-th matrix variable \(X_{k}\), and -k for terms involving \(X_{k}^{T}\) (here \(X\) and \(S\) are first and second variables in the order of declaration).

Finally, the second and third arguments of lmiterm contain the numerical data (values of the constant term, outer factor, or matrix coefficients \(P\) and \(Q\) for variable terms \(P X Q\) or \(P X^{T} Q\) ). These arguments must refer to existing MATLAB variables and be real-valued. See "Complex-Valued LMIs" on page 4-37 for the specification of LMIs with complexvalued coefficients.

Some shorthand is provided to simplify term specification. First, blocks are zero by default. Second, in diagonal blocks the extra argument 's' allows you to specify the conjugated expression \(A X B+B^{T} X^{T} A^{T}\) with a single lmiterm command. For instance, the first command specifies \(A^{T} X+X A\) as the "symmetrization" of \(X A\). Finally, scalar values are allowed as shorthand for scalar matrices, i.e., matrices of the form \(\alpha I\) with \(\alpha\)
scalar. Thus, a constant term of the form \(\alpha I\) can be specified as the "scalar" \(\alpha\). This also applies to the coefficients \(P\) and \(Q\) of variable terms. The dimensions of scalar matrices are inferred from the context and set to 1 by default. For instance, the third LMI \(S>I\) in "Specify Matrix Variable Structures" on page 4-34 is described by
```

lmiterm([[-3 1 1 1 2],1,1); % 1*S*1 = S
lmiterm([[3 11 1 0],1); % 1*I = I

```

Recall that by convention \(S\) is considered as the right side of the inequality, which justifies the -3 in the first command.

Finally, to improve readability it is often convenient to attach an identifier (tag) to each LMI and matrix variable. The variable identifiers are returned by lmivar and the LMI identifiers are set by the function newlmi. These identifiers can be used in lmiterm commands to refer to a given LMI or matrix variable. For the LMI system of "Specify LMI System" on page 4-9, this would look like:
```

setlmis([])
X = lmivar(1,[[6 1]);
S = lmivar(1,[2 0;2 1]);
BRL = newlmi;
lmiterm([BRL 1 1 X],1,A,'s');
lmiterm([BRL 1 1 S S],C',C);
lmiterm([BRL 1 2 X],1,B);
lmiterm([BRL 2 2 S],-1,1);
Xpos = newlmi;
lmiterm([-Xpos 1 1 X],1,1);
Slmi = newlmi;
lmiterm([-Slmi 1 1 S],1,1);
lmiterm([Slmi 1 1 0],1);

```

When the LMI system is completely specified, get the internal representation of the problem.
```

LMISYS = getlmis;

```

This returns the internal representation LMISYS of this LMI system. This MATLAB description of the problem can be forwarded to other LMI-Lab functions for subsequent processing. The command getlmis must be used only once and after declaring all matrix variables and LMI terms.

Here the identifiers X and S point to the variables \(X\) and \(S\) while the tags BRL, Xpos, and Slmi point to the first, second, and third LMI, respectively. Note that -Xpos refers to the right-hand side of the second LMI. Similarly, \(-X\) would indicate transposition of the variable \(X\).

\section*{See Also}
getlmis | lmiterm | lmivar | setlmis

\section*{Related Examples}
- "Specify LMIs with the LMI Editor GUI" on page 4-17

\section*{More About}
- "How lmivar and lmiterm Manage LMI Representation" on page 4-21

\section*{Specify LMIs with the LMI Editor GUI}

The LMI Editor lmiedit is a graphical user interface (GUI) to specify LMI systems in a straightforward symbolic manner. Typing

\section*{lmiedit}
calls up a window with several editable text areas and various buttons.


In more detail, to specify your LMI system,
1 Declare each matrix variable (name and structure) in the upper half of the worksheet. The structure is characterized by its type (S for symmetric block diagonal, R for unstructured, and G for other structures) and by an additional " structure" matrix. This matrix contains specific information about the structure and
corresponds to the second argument of lmivar (see "Specifying the LMI Variables" on page 4-11 for details).

Please use one line per matrix variable in the text editing areas.
2 Specify the LMIs as MATLAB expressions in the lower half of the worksheet. For instance, the LMI
\[
\left(\begin{array}{cc}
A^{T} X+X A & X B \\
B^{T} X & -I
\end{array}\right)<0
\]
is entered by typing
[a'*x+x*a x*b; b'*x -1] < 0
if x is the name given to the matrix variable \(X\) in the upper half of the worksheet. The left- and right-hand sides of the LMIs should be valid MATLAB expressions.

Once the LMI system is fully specified, the following tasks can be performed by clicking the corresponding button:
- Visualize the sequence of lmivar/lmiterm commands needed to describe this LMI system (view commands button). Conversely, the LMI system defined by a particular sequence of lmivar/lmiterm commands can be displayed as a MATLAB expression by clicking on the describe... buttons.

Beginners can use this facility as a tutorial introduction to the lmivar and lmiterm commands.
- Save the symbolic description of the LMI system (save button). This description can be reloaded later on by clicking the load button.
- Read a sequence of lmivar/lmiterm commands from a file (read button). You can then click on describe the matrix variables or describe the LMIs to visualize the symbolic expression of the LMI system specified by these commands. The file should describe a single LMI system but may otherwise contain any sequence of MATLAB commands.

This feature is useful for code validation and debugging.
Write in a file the sequence of lmivar/lmiterm commands needed to describe a particular LMI system (write button).

This is helpful to develop code and prototype MATLAB functions based on the LMI Lab.
- Generate the internal representation of the LMI system by clicking create. The result is written in a MATLAB variable named after the LMI system (if the "name of the LMI system" is set to mylmi, the internal representation is written in the MATLAB variable mylmi). Note that all LMI-related data should be defined in the MATLAB workspace at this stage.

The internal representation can be passed directly to the LMI solvers or any other LMI Lab function.

\section*{Keyboard Shortcuts}

As with lmiterm, you can use various shortcuts when entering LMI expressions at the keyboard. For instance, zero blocks can be entered simply as 0 and need not be dimensioned. Similarly, the identity matrix can be entered as 1 without dimensioning. Finally, upper diagonal LMI blocks need not be fully specified. Rather, you can just type (*) in place of each such block.

\section*{Limitations}

Though fairly general, lmiedit is not as flexible as lmiterm and the following limitations should be kept in mind:
- Parentheses cannot be used around matrix variables. For instance, the expression \((a * x+b)^{\prime *} c+c^{\prime *}\left(a^{*} x+b\right)\)
is invalid when \(x\) is a variable name. By contrast,
```

(a+b)'*x + x'*(a+b)

```
is perfectly valid.
- Loops and if statements are ignored.
- When turning lmiterm commands into a symbolic description of the LMI system, an error is issued if the first argument of lmiterm cannot be evaluated. Use the LMI and variable identifiers supplied by newlmi and lmivar to avoid such difficulties.

\section*{Related Examples}
- "Specify LMI System at the Command Line" on page 4-9

\section*{How Imivar and Imiterm Manage LMI Representation}

Users familiar with MATLAB may wonder how lmivar and lmiterm physically update the internal representation LMISYS since LMISYS is not an argument to these functions. In fact, all updating is performed through global variables for maximum speed. These global variables are initialized by setlmis, cleared by getlmis, and are not visible in the workspace. Even though this artifact is transparent from the user's viewpoint, be sure to:
- Invoke getlmis only once and after completely specifying the LMI system.
- Refrain from using the command clear global before the LMI system description is ended with getlmis.

\section*{More About}
- "Querying the LMI System Description" on page 4-22

\section*{Querying the LMI System Description}

Recall that the full description of an LMI system is stored as a single vector called the internal representation. The user should not attempt to read or retrieve information directly from this vector. Robust Control Toolbox software provides three functions called lmiinfo, lminbr, and matnbr to extract and display all relevant information in a userreadable format.

\section*{Imiinfo}

Iminbr is an interactive facility to retrieve qualitative information about LMI systems. This includes the number of LMIs, the number of matrix variables and their structure, the term content of each LMI block, etc. To invoke lmiinfo, enter

\section*{lmiinfo(LMISYS)}
where LMISYS is the internal representation of the LMI system produced by getlmis.

\section*{Iminbr and matnbr}

These two functions return the number of LMIs and the number of matrix variables in the system. To get the number of matrix variables, for instance, enter
```

matnbr(LMISYS)

```

\section*{More About}
- "LMI Solvers" on page 4-23

\section*{LMI Solvers}

LMI solvers are provided for the following three generic optimization problems (here \(x\) denotes the vector of decision variables, i.e., of the free entries of the matrix variables \(X_{1}, \ldots, X_{K}\) ):
- Feasibility problem

Find \(x \in R^{N}\) (or equivalently matrices \(X_{1}, \ldots, X_{K}\) with prescribed structure) that satisfies the LMI system
\(A(x)<B(x)\)
The corresponding solver is called feasp.
- Minimization of a linear objective under LMI constraints

Minimize \(c^{T} x\) over \(x \in R^{N}\) subject to \(A(x)<B(x)\)
The corresponding solver is called mincx.
- Generalized eigenvalue minimization problem

Minimize \(\lambda\) over \(x \in R^{N}\) subject to
\[
\begin{aligned}
C(x) & <D(x) \\
0 & <B(x) \\
A(x) & <\lambda B(x) .
\end{aligned}
\]

The corresponding solver is called gevp.
Note that \(A(x)<\mathrm{B}(x)\) above is a shorthand notation for general structured LMI systems with decision variables \(x=\left(x_{1}, \ldots, x_{N}\right)\).

The three LMI solvers feasp, mincx, and gevp take as input the internal representation LMISYS of an LMI system and return a feasible or optimizing value \(x^{*}\) of the decision variables. The corresponding values of the matrix variables \(X_{1}, \ldots, X_{K}\) are derived from \(x^{*}\) with the function dec2mat. These solvers are C-MEX implementations of the polynomial-time Projective Algorithm Projective Algorithm of Nesterov and Nemirovski [3], [2].

For generalized eigenvalue minimization problems, it is necessary to distinguish between the standard LMI constraints \(\mathrm{C}(x)<\mathrm{D}(x)\) and the linear-fractional LMIs
\(\mathrm{A}(\mathrm{x})<\mathrm{AB}(\mathrm{x})\)
attached to the minimization of the generalized eigenvalue \(\lambda\). When using gevp, you should follow these three rules to ensure proper specification of the problem:
- Specify the LMIs involving \(\lambda\) as \(A(x)<B(x)\) (without the \(\lambda\) )
- Specify them last in the LMI system. gevp systematically assumes that the last \(L\) LMIs are linear-fractional if \(L\) is the number of LMIs involving \(\lambda\)
- Add the constraint \(0<B(x)\) or any other constraint that enforces it. This positivity constraint is required for well-posedness of the problem and is not automatically added by gevp.

An initial guess xinit for \(x\) can be supplied to mincx or gevp. Use mat2dec to derive xinit from given values of the matrix variables \(X_{1}, \ldots, X_{K}\).

The example "Minimize Linear Objectives under LMI Constraints" on page 4-25 illustrates the use of the mincx solver.

\section*{Related Examples}
- "Minimize Linear Objectives under LMI Constraints" on page 4-25

\section*{Minimize Linear Objectives under LMI Constraints}

Consider the optimization problem:
Minimize Trace \((X)\) subject to
\(A^{T} X+X A+X B B^{T} X+Q<0\)
with data
\[
A=\left(\begin{array}{ccc}
-1 & -2 & 1 \\
3 & 2 & 1 \\
1 & -2 & -1
\end{array}\right) ; \quad B=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) ; \quad Q=\left(\begin{array}{ccc}
1 & -1 & 0 \\
-1 & -3 & -12 \\
0 & -12 & -36
\end{array}\right) .
\]

It can be shown that the minimizer \(X^{*}\) is simply the stabilizing solution of the algebraic Riccati equation
\(A^{T} X+X A+X B B^{T} X+Q=0\)
This solution can be computed directly with the Riccati solver care and compared to the minimizer returned by mincx.

From an LMI optimization standpoint, the problem specified in Equation 4-4 is equivalent to the following linear objective minimization problem:

Minimize Trace \((X)\) subject to
\[
\left(\begin{array}{cc}
A^{T} X+X A+Q & X B \\
B^{T} X & -I
\end{array}\right)<0 .
\]

Since \(\operatorname{Trace}(X)\) is a linear function of the entries of \(X\), this problem falls within the scope of the mincx solver and can be numerically solved as follows:

1 Define the LMI constraint of Equation 4-4 by the sequence of commands
```

setlmis([])
X = lmivar(1,[3 1]) % variable X, full symmetric
lmiterm([[1 1 1 1 X],1,a,'s')
lmiterm([$$
\begin{array}{llll}{1}&{1}&{1}&{0}\end{array}
$$],q)

```
```

lmiterm([[$$
\begin{array}{llll}{1}&{2}&{2}&{0}\end{array}
$$],-1)
lmiterm([1 [2 1 X],b',1)
LMIs = getlmis

```

2 Write the objective Trace \((X)\) as \(c^{T} x\) where \(x\) is the vector of free entries of \(X\). Since \(c\) should select the diagonal entries of \(X\), it is obtained as the decision vector corresponding to \(X=I\), that is,
c = mat2dec(LMIs,eye(3))
Note that the function defcx provides a more systematic way of specifying such objectives (see "Specifying c \({ }^{T}\) x Objectives for mincx" on page 4-39 for details).

3 Call mincx to compute the minimizer xopt and the global minimum copt \(=\) c'*xopt of the objective:
```

options = [1e-5,0,0,0,0]
[copt,xopt] = mincx(LMIs,c,options)

```

Here \(1 \mathrm{e}-5\) specifies the desired relative accuracy on copt.
The following trace of the iterative optimization performed by mincx appears on the screen:

Solver for linear objective minimization under LMI constraints Iterations : Best objective value so far
\begin{tabular}{|l|l|l|}
\hline 1 & -8.511476 & \\
\hline 2 & -13.063640 & \\
\hline 3 & new lower bound: & -34.023978 \\
\hline\(* * *\) & -15.768450 & \\
\hline 4 & new lower bound: & -25.005604 \\
\hline\(* * *\) & -17.123012 & \\
\hline 5 & new lower bound: & -21.306781 \\
\hline\(* * *\) & -17.882558 & \\
\hline 6 & new lower bound: & -19.819471 \\
\hline\(* * *\) & -18.339853 & \\
\hline 7 & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline\(* * *\) & new lower bound: & -19.189417 \\
\hline 8 & -18.552558 & \\
\hline\(* * *\) & new lower bound: & -18.919668 \\
\hline 9 & -18.646811 & \\
\hline\(* * *\) & new lower bound: & -18.803708 \\
\hline 10 & -18.687324 & \\
\hline\(* * *\) & new lower bound: & -18.753903 \\
\hline 11 & -18.705715 & \\
\hline\(* * *\) & new lower bound: & -18.732574 \\
\hline 12 & -18.712175 & \\
\hline\(* * *\) & new lower bound: & -18.723491 \\
\hline 13 & -18.714880 & \\
\hline\(* * *\) & new lower bound: & -18.719624 \\
\hline 14 & -18.716094 & \\
\hline\(* * *\) & new lower bound: & -18.717986 \\
\hline 15 & -18.716509 & \\
\hline\(* * *\) & new lower bound: & -18.717297 \\
\hline 16 & -18.716695 & \\
\hline\(* * *\) & new lower bound: & -18.716873 \\
\hline
\end{tabular}

Result: feasible solution of required accuracy best objective value: -18.716695 guaranteed relative accuracy: \(9.50 \mathrm{e}-06\) f-radius saturation: \(0.000 \%\) of \(R=1.00 \mathrm{e}+09\)

The iteration number and the best value of \(c^{T} x\) at the current iteration appear in the left and right columns, respectively. Note that no value is displayed at the first iteration, which means that a feasible \(x\) satisfying the constraint (Equation 4-5) was found only at the second iteration. Lower bounds on the global minimum of \(c^{T} x\) are sometimes detected as the optimization progresses. These lower bounds are reported by the message
```

*** new lower bound: xxx

```

Upon termination, mincx reports that the global minimum for the objective Trace \((X)\) is -18.716695 with relative accuracy of at least \(9.5 \times 10^{-6}\). This is the value copt returned by mincx.

4 mincx also returns the optimizing vector of decision variables xopt. The corresponding optimal value of the matrix variable \(X\) is given by

Xopt = dec2mat(LMIs,xopt,X)
which returns
\[
X_{o p t}=\left(\begin{array}{ccc}
-6.3542 & -5.8895 & 2.2046 \\
-5.8895 & -6.2855 & 2.2201 \\
2.2046 & 2.2201 & -6.0771
\end{array}\right) .
\]

This result can be compared with the stabilizing Riccati solution computed by care:
```

Xst = care(a,b,q,-1)
norm(Xopt-Xst)
ans =
6.5390e-05

```

\section*{Related Examples}
- "Conversion Between Decision and Matrix Variables" on page 4-29

\section*{Conversion Between Decision and Matrix Variables}

While LMIs are specified in terms of their matrix variables \(X_{1}, \ldots, X_{\mathrm{K}}\), the LMI solvers optimize the vector \(x\) of free scalar entries of these matrices, called the decision variables. The two functions mat2dec and dec2mat perform the conversion between these two descriptions of the problem variables.

Consider an LMI system with three matrix variables \(X_{1}, X_{2}, X_{3}\). Given particular values X1, X2, X3 of these variables, the corresponding value xdec of the vector of decision variables is returned by mat2dec:
```

xdec = mat2dec(LMISYS,X1,X2,X3)

```

An error is issued if the number of arguments following LMISYS differs from the number of matrix variables in the problem (see matnbr).

Conversely, given a value xdec of the vector of decision variables, the corresponding value of the \(k\)-th matrix is given by dec2mat. For instance, the value X2 of the second matrix variable is extracted from xdec by
```

X2 = dec2mat(LMISYS,xdec,2)

```

The last argument indicates that the second matrix variable is requested. It could be set to the matrix variable identifier returned by lmivar.

The total numbers of matrix variables and decision variables are returned by matnbr and decnbr, respectively. In addition, the function decinfo provides precise information about the mapping between decision variables and matrix variable entries.

\section*{Related Examples}
- "Validating Results" on page 4-30

\section*{Validating Results}

The LMI Lab offers two functions to analyze and validate the results of an LMI optimization. The function evallmi evaluates all variable terms in an LMI system for a given value of the vector of decision variables, for instance, the feasible or optimal vector returned by the LMI solvers. Once this evaluation is performed, the left and right sides of a particular LMI are returned by showlmi.

In the LMI problem considered in "Minimize Linear Objectives under LMI Constraints" on page \(4-25\), you can verify that the minimizer xopt returned by mincx satisfies the LMI constraint (Equation 4-5) as follows:
```

evlmi = evallmi(LMIs,xopt)
[lhs,rhs] = showlmi(evlmi,1)

```

The first command evaluates the system for the value xopt of the decision variables, and the second command returns the left and right sides of the first (and only) LMI. The negative definiteness of this LMI is checked by
```

eig(lhs-rhs)
ans =
-2.0387e-04
-3.9333e-05
-1.8917e-07
-4.6680e+01

```

\section*{Related Examples}
- "Modify a System of LMIs" on page 4-31

\section*{Modify a System of LMIs}

Once specified, a system of LMIs can be modified in several ways with the functions dellmi, delmvar, and setmvar.

\section*{Deleting an LMI}

The first possibility is to remove an entire LMI from the system with dellmi. For instance, suppose that the LMI system of "Specify LMI System" on page 4-9 is described in LMISYS and that we want to remove the positivity constraint on \(X\). This is done by
```

NEWSYS = dellmi(LMISYS,2)

```
where the second argument specifies deletion of the second LMI. The resulting system of two LMIs is returned in NEWSYS.

The LMI identifiers (initial ranking of the LMI in the LMI system) are not altered by deletions. As a result, the last LMI
\(S>I\)
remains known as the third LMI even though it now ranks second in the modified system. To avoid confusion, it is safer to refer to LMIs via the identifiers returned by newlmi. If BRL, Xpos, and Slmi are the identifiers attached to the three LMIs described in "Specify LMI System" on page 4-9, Slmi keeps pointing to \(S>I\) even after deleting the second LMI by
```

NEWSYS = dellmi(LMISYS,Xpos)

```

\section*{Deleting a Matrix Variable}

Another way of modifying an LMI system is to delete a matrix variable, that is, to remove all variable terms involving this matrix variable. This operation is performed by delmvar. For instance, consider the LMI
\(A^{T} X+X A+B W+W^{T} B^{T}+I<0\)
with variables \(X=X^{T} \in R^{4} \times{ }^{4}\) and \(W \in R^{2} \times^{4}\). This LMI is defined by
setlmis([])
X = lmivar(1,[4 1]) \% X
```

W = lmivar(2,[2 4]) % W
lmiterm([[1 1 1 1 X X],1,A,'s')
lmiterm([[1 1 1 1 W],B,1,'s')
lmiterm([[1 1 1 0],1)
LMISYS = getlmis

```

To delete the variable W , type the command
NEWSYS = delmvar(LMISYS,W)
The resulting NEWSYS now describes the Lyapunov inequality
\(A^{T} X+X A+I<0\)
Note that delmvar automatically removes all LMIs that depended only on the deleted matrix variable.

The matrix variable identifiers are not affected by deletions and continue to point to the same matrix variable. For subsequent manipulations, it is therefore advisable to refer to the remaining variables through their identifier. Finally, note that deleting a matrix variable is equivalent to setting it to the zero matrix of the same dimensions with setmvar.

\section*{Instantiating a Matrix Variable}

The function setmvar is used to set a matrix variable to some given value. As a result, this variable is removed from the problem and all terms involving it become constant terms. This is useful, for instance, to fixsetmvar some variables and optimize with respect to the remaining ones.

Consider again "Specify LMI System" on page 4-9 and suppose we want to know if the peak gain of \(G\) itself is less than one, that is, if
\(\|G\|^{\infty}<1\)
This amounts to setting the scaling matrix \(D\) (or equivalently, \(S=D^{\mathrm{T}} D\) ) to a multiple of the identity matrix. Keeping in mind the constraint \(S>I\), a legitimate choice is \(S=2\) \(B \Psi-I\). To set \(S\) to this value, enter
```

NEWSYS = setmvar(LMISYS,S,2)

```

The second argument is the variable identifier \(S\), and the third argument is the value to which \(S\) should be set. Here the value 2 is shorthand for 2 -by-I. The resulting system NEWSYS reads
\[
\begin{aligned}
&\left(\begin{array}{cc}
A^{T} X+X A+2 C^{T C} & X B \\
B^{T} X & -2 I
\end{array}\right)<0 \\
& X>0 \\
& 2 I>I .
\end{aligned}
\]

Note that the last LMI is now free of variable and trivially satisfied. It could, therefore, be deleted by
```

NEWSYS = dellmi(NEWSYS,3)

```
or
NEWSYS = dellmi(NEWSYS,Slmi)
if Slmi is the identifier returned by newlmi.

\section*{Related Examples}
- "Advanced LMI Techniques" on page 4-34

\section*{Advanced LMI Techniques}

This last section gives a few hints for making the most out of the LMI Lab. It is directed toward users who are comfortable with the basics, as described in "Tools for Specifying and Solving LMIs" on page 4-2.

\section*{Structured Matrix Variables}

Fairly complex matrix variable structures and interdependencies can be specified with lmivar. Recall that the symmetric block-diagonal or rectangular structures are covered by Types 1 and 2 of lmivar provided that the matrix variables are independent. To describe more complex structures or correlations between variables, you must use Type 3 and specify each entry of the matrix variables directly in terms of the free scalar variables of the problem (the so-called decision variables).

With Type 3, each entry is specified as either 0 or \(\pm x_{\mathrm{n}}\) where \(x_{\mathrm{n}}\) is the \(n\)-th decision variable. The following examples illustrate how to specify nontrivial matrix variable structures with lmivar. The following examples show variable structures with uncorrelated and interdependent matrix variables.

\section*{Specify Matrix Variable Structures}

Suppose that the variables of the problem include a 3 -by- 3 symmetric matrix \(X\) and a 3-by-3 symmetric Toeplitz matrix, \(Y\), given by:
\[
Y=\left(\begin{array}{lll}
y_{1} & y_{2} & y_{3} \\
y_{2} & y_{1} & y_{2} \\
y_{3} & y_{2} & y_{1}
\end{array}\right)
\]

The variable \(Y\) has three independent entries, and thus involves three decision variables. Since \(Y\) is independent of \(X\), label these decision variables \(n+1, n+2\), and \(n+3\), where \(n\) is the number of decision variables involved in \(X\). To retrieve this number, define the Type 1 variable \(X\).
```

setlmis([])
[X,n] = lmivar(1,[3 1]);
n
n = 6

```

The second output argument n gives the total number of decision variables used so far, which in this case is \(\mathrm{n}=6\). Given this number, you can define \(Y\).
\(Y=\operatorname{lmivar}\left(3, n+\left[\begin{array}{lllll}1 & 2 & 3 ; 2 & 1 & 2 ; 3 \\ 2 & 1\end{array}\right]\right) ;\)
An equivalent expression to define \(Y\) uses the MATLAB(R) command toeplitz to generate the matrix.
```

Y = lmivar(3,toeplitz(n+[1 2 3]));

```

To confirm the variables, visualize the decision variable distributions in \(X\) and \(Y\) using decinfo.
```

lmis = getlmis;
decinfo(lmis,X)
ans =

1	2	4
2	3	5
4	5	6

decinfo(lmis,Y)
ans =

7	8	9
8	7	8
9	8	7

```

\section*{Specify Interdependent Matrix Variables}

Consider three matrix variables, \(X, Y\), and \(Z\), with the following structure.
\[
X=\left(\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right), \quad Y=\left(\begin{array}{ll}
z & 0 \\
0 & t
\end{array}\right), \quad Z=\left(\begin{array}{cc}
0 & -x \\
-t & 0
\end{array}\right),
\]
where \(x, y, z\), and \(t\) are independent scalar variables. To specify such a triple, first define the two independent variables, \(X\) and \(Y\), which are both Type 1.
```

setlmis([]);

```
```

[X,n,sX] = lmivar(1,[1 0;1 0]);
[Y,n,sY] = lmivar(1,[1 0;1 0]);

```

The third output of lmivar gives the entry-wise dependence of \(X\) and \(Y\) on the decision variables \(\left(x_{1}, x_{2}, x_{3}, x_{4}\right):=(x, y, z, t)\).
sX
sX =
\begin{tabular}{ll}
1 & 0 \\
0 & 2
\end{tabular}
sY
sY =
\begin{tabular}{ll}
3 & 0 \\
0 & 4
\end{tabular}

Using lmivar, you can now specify the structure of the Type 3 variable \(Z\) in terms of the decision variables \(x_{1}=x\) and \(x_{4}=t\).
[Z,n,sZ] = lmivar(3,[0 -sX(1,1);-sY(2,2) 0]);

Because \(s X(1,1)\) refers to \({ }^{X_{1}}\) and \(s Y(2,2)\) refers to \({ }^{X_{4}}\), this expression defines the variable Z as:
\[
Z=\left(\begin{array}{cc}
0 & -x_{1} \\
-x_{4} & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & -x \\
-t & 0
\end{array}\right)
\]

Confirm this results by checking the entry-wise dependence of \(Z\) on its decision variables.
sZ
sZ =
\begin{tabular}{rr}
0 & -1 \\
-4 & 0
\end{tabular}

\section*{Complex-Valued LMIs}

The LMI solvers are written for real-valued matrices and cannot directly handle LMI problems involving complex-valued matrices. However, complex-valued LMIs can be turned into real-valued LMIs by observing that a complex Hermitian matrix \(L(x)\) satisfies
\(L(x)<0\)
if and only if
\[
\left(\begin{array}{cc}
\operatorname{Re}(L(x)) & \operatorname{Im}(L(x)) \\
-\operatorname{Im}(L(x)) & \operatorname{Re}(L(x))
\end{array}\right)<0 .
\]

This suggests the following systematic procedure for turning complex LMIs into real ones:
- Decompose every complex matrix variable \(X\) as
\[
X=X_{1}+j X_{2}
\]
where \(X_{1}\) and \(X_{2}\) are real
- Decompose every complex matrix coefficient \(A\) as
\(A=A_{1}+j A_{2}\)
where \(A_{1}\) and \(A_{2}\) are real
- Carry out all complex matrix products. This yields affine expressions in \(X_{1}, X_{2}\) for the real and imaginary parts of each LMI, and an equivalent real-valued LMI is readily derived from the above observation.

For LMIs without outer factor, a streamlined version of this procedure consists of replacing any occurrence of the matrix variable \(X=X_{1}+j X_{2}\) by
\[
\left(\begin{array}{cc}
X_{1} & X_{2} \\
-X_{2} & X_{1}
\end{array}\right)
\]
and any fixed matrix \(A=A_{1}+j A_{2}\), including real ones, by
\[
\left(\begin{array}{cc}
A_{1} & A_{2} \\
-A_{2} & A_{1}
\end{array}\right)
\]

For instance, the real counterpart of the LMI system
\(M^{H} X M<X, \quad X=X^{H}>I\)
reads (given the decompositions \(M=M_{1}+j M_{2}\) and \(X=X_{1}+j X_{2}\) with \(M \mathrm{j}, X j\) real):
\[
\begin{gathered}
\left(\begin{array}{cc}
M_{1} & M_{2} \\
-M_{2} & M_{1}
\end{array}\right)^{T}\left(\begin{array}{cc}
X_{1} & X_{2} \\
-X_{2} & X_{1}
\end{array}\right)\left(\begin{array}{cc}
M_{1} & M_{2} \\
-M_{2} & M_{1}
\end{array}\right)<\left(\begin{array}{cc}
X_{1} & X_{2} \\
-X_{2} & X_{1}
\end{array}\right) \\
\left(\begin{array}{cc}
X_{1} & X_{2} \\
-X_{2} & X_{1}
\end{array}\right)<I .
\end{gathered}
\]

Note that \(X=X^{H}\) in turn requires that \(X_{1}=X_{1}^{H}\) and \(X_{2}+X_{2}^{T}=0\). Consequently, \(X_{1}\) and \(\mathrm{X}_{2}\) should be declared as symmetric and skew- symmetric matrix variables, respectively.

Assuming, for instance, that \(M \in \mathbf{C}^{5 \times 5}\), the LMI system (Equation 4-6) would be specified as follows:
```

M1=real(M), M2=imag(M)
bigM=[M1 M2;-M2 M1]
setlmis([])
% declare bigX=[X1 X2;-X2 X1] with X1=X1' and X2+X2'=0:
[X1,n1,sX1] = lmivar(1,[5 1])
[X2,n2,sX2] = lmivar(3,skewdec(5,n1))
bigX = lmivar(3,[sX1 sX2;-sX2 sX1])
% describe the real counterpart of (1.12):
lmiterm([1 1 1 1 0],1)
lmiterm([-1 1 1 1 bigX],1,1)
lmiterm([2 1 1 bigX],bigM',bigM)

```
```

lmiterm([-2 1 1 bigX],1,1)
lmis = getlmis

```

Note the three-step declaration of the structured matrix variable bigX,
\[
\operatorname{big} X=\left(\begin{array}{cc}
X_{1} & X_{2} \\
-X_{2} & X_{1}
\end{array}\right)
\]

1 Specify \(X_{1}\) as a (real) symmetric matrix variable and save its structure description \(\mathrm{sX1}\) as well as the number n 1 of decision variables used in \(X_{1}\).

2 Specify \(X_{2}\) as a skew-symmetric matrix variable using Type 3 of lmivar and the utility skewdec. The command skewdec ( \(5, \mathrm{n} 1\) ) creates a 5 -by- 5 skew-symmetric structure depending on the decision variables \(\mathrm{n} 1+1, \mathrm{n} 1+2, \ldots\)
3 Define the structure of bigX in terms of the structures SX1 and sX2 of \(X_{1}\) and \(X_{2}\).
See "Structured Matrix Variables" on page 4-34 for more details on such structure manipulations.

\section*{Specifying \(c^{\top} x\) Objectives for mincx}

The LMI solver mincx minimizes linear objectives of the form \(c^{T} x\) where \(x\) is the vector of decision variables. In most control problems, however, such objectives are expressed in terms of the matrix variables rather than of \(x\). Examples include Trace \((X)\) where \(X\) is a symmetric matrix variable, or \(u^{\mathrm{T}} X u\) where \(u\) is a given vector.

The function defcx facilitates the derivation of the \(c\) vector when the objective is an affine function of the matrix variables. For the sake of illustration, consider the linear objective
\[
\operatorname{Trace}(X)+x_{0}^{T} P x_{0}
\]
where \(X\) and \(P\) are two symmetric variables and \(x_{0}\) is a given vector. If Imsisys is the internal representation of the LMI system and if \(x_{0}, X, P\) have been declared by
```

x0 = [1;1]
setlmis([])
X = lmivar(1,[3 0])

```
```

P = lmivar(1,[[2 1])
:
lmisys = getlmis

```
the \(c\) vector such that \(c^{T} x=\operatorname{Trace}(X)+x_{0}^{T} P x_{0}\) can be computed as follows:
```

n = decnbr(lmisys)
c = zeros(n,1)
for j=1:n,
[Xj,Pj] = defcx(lmisys,j,X,P)
c(j) = trace(Xj) + x0'*Pj*x0
end

```

The first command returns the number of decision variables in the problem and the second command dimensions \(c\) accordingly. Then the for loop performs the following operations:

1 Evaluate the matrix variables \(X\) and \(P\) when all entries of the decision vector \(x\) are set to zero except \(x j:=1\). This operation is performed by the function defcx. Apart from lmisys and \(j\), the inputs of defcx are the identifiers \(X\) and \(P\) of the variables involved in the objective, and the outputs Xj and Pj are the corresponding values.
2 Evaluate the objective expression for \(\mathrm{X}:=\mathrm{Xj}\) and \(\mathrm{P}:=\mathrm{Pj}\). This yields the \(j\)-th entry of \(c\) by definition.

In our example the result is
c =
3
1
2
1
Other objectives are handled similarly by editing the following generic skeleton:
```

n = decnbr(LMI system)
c = zeros(n,1)
for j=1:n,
[matrix values] = defcx(LMI system,j,
matrix identifiers)
c(j) = objective(matrix values)
end

```

\section*{Feasibility Radius}

When solving LMI problems with feasp, mincx, or gevp, it is possible to constrain the solution \(x\) to lie in the ball
\(x^{T} x<R^{2}\)
where \(R>0\) is called the feasibility radius. This specifies a maximum (Euclidean norm) magnitude for \(x\) and avoids getting solutions of very large norm. This may also speed up computations and improve numerical stability. Finally, the feasibility radius bound regularizes problems with redundant variable sets. In rough terms, the set of scalar variables is redundant when an equivalent problem could be formulated with a smaller number of variables.

The feasibility radius \(R\) is set by the third entry of the options vector of the LMI solvers. Its default value is \(R=109\). Setting \(R\) to a negative value means "no rigid bound," in which case the feasibility radius is increased during the optimization if necessary. This "flexible bound" mode may yield solutions of large norms.

\section*{Well-Posedness Issues}

The LMI solvers used in the LMI Lab are based on interior-point optimization techniques. To compute feasible solutions, such techniques require that the system of LMI constraints be strictly feasible, that is, the feasible set has a nonempty interior. As a result, these solvers may encounter difficulty when the LMI constraints are feasible but not strictly feasible, that is, when the LMI
\(L(x) \leq 0\)
has solutions while
\(L(x)<0\)
has no solution.
For feasibility problems, this difficulty is automatically circumvented by feasp, which reformulates the problem:

Find \(x\) such that
\(L(x) \leq 0\)

\section*{as:}

Minimize \(t\) subject to

\section*{\(L x<t \times I\).}

In this modified problem, the LMI constraint is always strictly feasible in \(x, t\) and the original LMI Equation 4-7 is feasible if and only if the global minimum \(t_{\min }\) of Equation 4-7 satisfies
\(t_{\text {min }} \leq 0\)
For feasible but not strictly feasible problems, however, the computational effort is typically higher as feasp strives to approach the global optimum \(t_{\text {min }}=0\) to a high accuracy.

For the LMI problems addressed by mincx and gevp, nonstrict feasibility generally causes the solvers to fail and to return an "infeasibility" diagnosis. Although there is no universal remedy for this difficulty, it is sometimes possible to eliminate underlying algebraic constraints to obtain a strictly feasible problem with fewer variables.

Another issue has to do with homogeneous feasibility problems such as
\(A^{T} P+P A<0, P>0\)
While this problem is technically well-posed, the LMI optimization is likely to produce solutions close to zero (the trivial solution of the nonstrict problem). To compute a nontrivial Lyapunov matrix and easily differentiate between feasibility and infeasibility, replace the constraint \(P>0\)-by- \(P>\alpha I\) with \(\alpha>0\). Note that this does not alter the problem due to its homogeneous nature.

\section*{Semi-Definite \(B(x)\) in gevp Problems}

Consider the generalized eigenvalue minimization problem
Minimize \(\lambda\) subject to
\(A(x)<\lambda B(x), B(x)>0, C(x)<0\).
Technically, the positivity of \(B(x)\) for some \(x \in R^{n}\) is required for the well-posedness of the problem and the applicability of polynomial-time interior-point methods. Hence problems where
\[
B(x)=\left(\begin{array}{cc}
B_{1}(x) & 0 \\
0 & 0
\end{array}\right)
\]
with \(B_{1}(x)>0\) strictly feasible, cannot be directly solved with gevp. A simple remedy consists of replacing the constraints
\(A(x)<B(x), B(x)>0\)
by
\[
A(x)<\left(\begin{array}{cc}
Y & 0 \\
0 & 0
\end{array}\right), \quad Y<\lambda B_{1}(x), \quad B_{1}(x)>0
\]
where \(Y\) is an additional symmetric variable of proper dimensions. The resulting problem is equivalent to Equation 4-9 and can be solved directly with gevp.

\section*{Efficiency and Complexity Issues}

As explained in "Tools for Specifying and Solving LMIs" on page 4-2, the term-oriented description of LMIs used in the LMI Lab typically leads to higher efficiency than the canonical representation
\(A_{0}+x_{1} A_{1}+\ldots+x_{N} A_{N}<0\).
This is no longer true, however, when the number of variable terms is nearly equal to or greater than the number \(N\) of decision variables in the problem. If your LMI problem has few free scalar variables but many terms in each LMI, it is therefore preferable to rewrite it as Equation 4-10 and to specify it in this form. Each scalar variable \(x_{j}\) is then declared independently and the LMI terms are of the form \(x_{j} A_{j}\).

If \(M\) denotes the total row size of the LMI system and \(N\) the total number of scalar decision variables, the flop count per iteration for the feasp and mincx solvers is proportional to
- \(N^{3}\) when the least-squares problem is solved via. Cholesly factorization of the Hessian matrix (default) [2]
- \(M\)-by- \(N^{2}\) when numerical instabilities warrant the use of QR factorization instead

While the theory guarantees a worst-case iteration count proportional to \(M\), the number of iterations actually performed grows slowly with \(M\) in most problems. Finally, while feasp and mincx are comparable in complexity, gevp typically demands more computational effort. Make sure that your LMI problem cannot be solved with mincx before using gevp.

\section*{Solving \(M+P^{\top} X Q+Q^{\top} X^{\top} P<0\)}

In many output-feedback synthesis problems, the design can be performed in two steps:
1 Compute a closed-loop Lyapunov function via LMI optimization.
2 Given this Lyapunov function, derive the controller state-space matrices by solving an LMI of the form
\(M+P^{T} X Q+Q^{T} X^{T} P<0\)
where \(M, P, Q\) are given matrices and \(X\) is an unstructured \(m\)-by- \(n\) matrix variable.
It turns out that a particular solution \(X c\) of Equation 4-11 can be computed via simple linear algebra manipulations [1]. Typically, Xc corresponds to the center of the ellipsoid of matrices defined by Equation 4-11.

The function basiclmi returns the "explicit" solution \(X\) c:
Xc = basiclmi( \(M, P, Q\) )
Since this central solution sometimes has large norm, basiclmi also offers the option of computing an approximate least-norm solution of Equation 4-11. This is done by
```

X = basiclmi(M,P,Q,'Xmin')

```
and involves LMI optimization to minimize \(\|X\|\).

\section*{More About}
- "Tools for Specifying and Solving LMIs" on page 4-2

\section*{Bibliography}
[1] Gahinet, P., and P. Apkarian, "A Linear Matrix Inequality Approach to \(H^{\circ}\) Control," Int. J. Robust and Nonlinear Contr., 4 (1994), pp. 421-448.
[2] Nemirovski, A., and P. Gahinet, "The Projective Method for Solving Linear Matrix Inequalities," Proc. Amer. Contr. Conf., 1994, pp. 840-844.
[3] Nesterov, Yu, and A. Nemirovski, Interior Point Polynomial Methods in Convex Programming: Theory and Applications, SIAM Books, Philadelphia, 1994.
[4] Shamma, J.S., "Robustness Analysis for Time-Varying Systems," Proc. Conf. Dec. Contr., 1992, pp. 3163-3168.

\section*{Analyzing Uncertainty Effects in Simulink}
- "Analyzing Uncertainty in Simulink" on page 5-2
- "Specify Uncertainty Using Uncertain State Space Blocks" on page 5-4
- "Simulate Uncertainty Effects" on page 5-7
- "Vary Uncertainty Values Using Individual Uncertain State Space Blocks" on page 5-8
- "Vary Uncertainty Values Across Multiple Uncertain State Space Blocks" on page 5-15
- "Compute Uncertain State-Space Models from Simulink Models" on page 5-20
- "Linearize Block to Uncertain Model" on page 5-25
- "Analyzing Stability Margin of Simulink Models" on page 5-31
- "Stability Margin of a Simulink Model" on page 5-33

\section*{Analyzing Uncertainty in Simulink}

Robust Control Toolbox software provides tools to model uncertainty in Simulink. Using these tools, you can analyze how the uncertainty impacts the time- and frequencydomain behavior of the Simulink model.

The Uncertain State Space block, included in the Robust Control Toolbox block library, is a convenient way to incorporate uncertainty information in a Simulink model. For more information, see "Specify Uncertainty Using Uncertain State Space Blocks" on page 5-4. Using this block, you can perform the following types of analysis:
- Vary the uncertainty and see how it affects the time responses (Monte Carlo analysis). See "Simulate Uncertainty Effects" on page 5-7.
- Analyze the effects of uncertainty on the linearized dynamics:
- If the operating point does not depend on the parameter uncertainty, use ulinearize to obtain an uncertain state-space model. You can then use usample to sample the uncertain variables and obtain a family of LTI models.
- If the operating point depends on the parameter uncertainty, use usample to sample the uncertainty and then use the Simulink Control Design \({ }^{\text {TM }}\) linearize command to compute the linearized dynamics for each uncertainty value.

See "How to Vary Uncertainty Values" on page 5-7 and "Obtain Uncertain State-Space Model from Simulink Model" on page 5-20.
- Compute an uncertain linearization, i.e., obtain an uncertain state-space model (uss object) that combines the uncertain variables with the linearized dynamics. You can use this model to perform worst-case robustness analysis. See "Obtain Uncertain State-Space Model from Simulink Model" on page 5-20.

If you cannot use Uncertain State Space blocks in the Simulink model because you share the model or generate code, you can still compute an uncertain linearization by specifying a block to linearize to an uncertain variable. For example, you can specify a gain block to linearize to an uncertain real parameter (ureal). See "Specify Uncertain Linearization for Core or Custom Simulink Blocks" on page 5-21. You can then use the uncertain state-space model to analyze robustness in the linear operating range.

\section*{Simulink Blocks for Analyzing Uncertainty}

Robust Control Toolbox software provides an Uncertain State Space block to model parametric and dynamic uncertainty in Simulink. The block library also contains a

MultiPlot Graph block that you use with the Uncertain State Space block to plot and visualize Monte Carlo simulation responses.

To open the Robust Control Toolbox block library, type the following command at the MATLAB prompt:

\section*{RCTblocks}

The block library opens, as shown in the following figure.


Alternatively, in a Simulink model window, click 回 to launch to Library Browser. In the Library Browser, select Robust Control Toolbox.

\section*{See Also}
linearize | ulinearize | Uncertain State Space

\section*{Related Examples}
- "Obtain Uncertain State-Space Model from Simulink Model" on page 5-20

\section*{Specify Uncertainty Using Uncertain State Space Blocks}

\section*{How to Specify Uncertainty in Uncertain State Space Blocks}

Specifying uncertainty in the Uncertain State Space block makes the uncertainty a part of the Simulink model and affects both simulation and linearization. Use this approach to vary the uncertainty and analyze the effects on simulation or linearization.

To specify uncertainty in the Uncertain State Space block:
1 Drag and drop an Uncertain State Space block from the Robust Control Toolbox block library into a Simulink model. For more information on how to open the block library, see "Simulink Blocks for Analyzing Uncertainty" on page 5-2.


2 In the Simulink model, double-click the Uncertain State Space block to open the Function Block Parameters: Uncertain State Space dialog box, as shown in the following figure.

\section*{Function Block Parameters: Uncertain State Space}

Uncertain State Space Block (mask) (link)
This block models linear systems with uncertain parameters and uncertain dynamics (see USS).

You can simulate how uncertainty affects system performance by generating randomized values for the uncertain variables. Use UFIND to find all uncertain variables in the model and USAMPLE to generate sample values for the "Uncertainty value" mask parameter. Each uncertainty value represents one possible behavior of the uncertain system.

You can also investigate uncertainty effects in the frequency domain by linearizing the Simulink model with ULINEARIZE. This computes an uncertain state-space model (USS) that aggregates the uncertainty from all Uncertain State Space blocks.

\section*{Parameters}

Uncertain system variable (uss):
```

ss(ureal('a',-5),5,1,1)

```

Uncertainty value (struct or [] to use nominal value):

\section*{[]}

Initial states (nominal dynamics):

\section*{[]}

Initial states (uncertain dynamics):
[]


3 Specify an uncertain state-space model in the Uncertain system variable (uss) field. The model must be an uss object or any other model that can be converted to
uss, such as umat, ureal and ultidyn. The model depends on a set of uncertain variables (ureal or ultidyn) and you can specify the model as one of the following:
- Function or expression that evaluates to an uss model. For example, ss(ureal('a',-5), 5, 1, 1).
- Variable, defined in the MATLAB workspace. For example, unc_sys, where unc_sys is defined as ss (ureal('a', -5 ) , \(5,1,1\) ) in the workspace.
4 Specify values for the uncertain variables that the uncertain state-space model you specify in step 3 uses. For example, if you specify the uncertain system as ureal('g', 2)*tf(1, [ureal('tau'), 1]), then you must specify values for the uncertain variables \(g\) and tau. To do so, enter a structure with fields \(g\) and tau in the Uncertainty value (struct or [] to use nominal value) field. You can also enter [ ] to use the nominal values of the uncertain parameters \(g\) and tau.

Tip: You can also use this field to vary the uncertainty values for performing Monte Carlo simulation. For more information, see "Simulate Uncertainty Effects" on page 5-7.
5 (Optional) Specify the initial states of the nominal and uncertain dynamics in the Initial states (nominal dynamics) and Initial states (uncertain dynamics) fields, respectively.

For more information on the block parameters, see the Uncertain State Space block reference page.

\section*{Next Steps}

After you specify uncertainty in Uncertain State Space blocks, you can perform one of the following:
- Simulate the model using nominal, manually-defined or random values, as described in "Simulate Uncertainty Effects" on page 5-7.
- Perform an uncertain linearization, as described in "Obtain Uncertain State-Space Model from Simulink Model" on page 5-20.

\section*{Simulate Uncertainty Effects}

\section*{How to Simulate Effects of Uncertainty}

As described in "Specify Uncertainty Using Uncertain State Space Blocks" on page 5-4, the uncertain state-space model you specify in the Uncertain State Space block depends on a set of uncertain variables (ureal or ultidyn objects.) You can simulate the model using nominal value of these uncertain variables. Additionally, you can sample these uncertain variables and simulate the model for various values in the uncertainty range (Monte Carlo simulation.) For more information, see "How to Vary Uncertainty Values" on page 5-7. You can view and compare the simulation results for various sample values of uncertainty using the MultiPlot Graph block.

\section*{How to Vary Uncertainty Values}

There are two ways to control the uncertainty values using the Uncertainty value (struct or [] to use nominal value) field of the Uncertain State Space block parameters dialog box:
- For simple models with few uncertain variables or one Uncertain State Space block, type the value in the Uncertain State Space block itself. For more information, see "Vary Uncertainty Values Using Individual Uncertain State Space Blocks" on page 5-8.
- For complex models with large number of uncertain variables or Uncertain State Space blocks, use a single data structure for all uncertain variables referenced by the model. Using this approach, you can collectively control the values of all or a subset of uncertain variables and toggle between nominal and user-defined values from the MATLAB prompt. For more information, see "Vary Uncertainty Values Across Multiple Uncertain State Space Blocks" on page 5-15.

\section*{Vary Uncertainty Values Using Individual Uncertain State Space Blocks}

This example shows the workflow for varying uncertainty values using individual Uncertain State Space blocks in a Simulink model. Use this approach for simple models with few uncertain variables or one Uncertain State Space block.

This section uses a simple Simulink model to provide step-by-step instructions for:
- Toggling between nominal, manually defined and randomly-generated uncertainty values associated with the Uncertain State Space block.
- Simulating the model's responses for these uncertainty values.

1 Open the Simulink model rct_sim_ex1. rct_sim_ex1

The model contains an Uncertain State Space block called Uncertain System, as shown in the following figure.


2 Double-click the Uncertain System block to open the Function Block Parameters dialog box.

\section*{Function Block Parameters: Uncertain System}

Uncertain State Space Block (mask) (link)
This block models linear systems with uncertain parameters and uncertain dynamics (see USS).

You can simulate how uncertainty affects system performance by generating randomized values for the uncertain variables. Use UFIND to find all uncertain variables in the model and USAMPLE to generate sample values for the "Uncertainty value" mask parameter. Each uncertainty value represents one possible behavior of the uncertain system.

You can also investigate uncertainty effects in the frequency domain by linearizing the Simulink model with ULINEARIZE. This computes an uncertain state-space model (USS) that aggregates the uncertainty from all Uncertain State Space blocks.

\section*{Parameters}

Uncertain system variable (uss):

\section*{unc_sys}

Uncertainty value (struct or [] to use nominal value):

\section*{[]}

Initial states (nominal dynamics):

\section*{[]}

Initial states (uncertain dynamics):
[]


The Uncertain System block uses the uncertain system variable unc_sys. This variable is defined in the Model workspace as unc_sys=
ss(ureal('a',-1, 'Range', [-2 -.5]), \(1,5,0) *\left(1+0.1 * i n p u t \_u n c\right)\). The uncertain model depends on a single uncertain variable named a. The Uncertainty value field specifies to use nominal value of the uncertain variable a.

Click OK to close the dialog box.
3
Click
to simulate the model.
The software uses the nominal value of a during simulation. After the simulation completes, the MultiPlot Graph shows the following plot.


4 To simulate the model using a manually defined value of a:
a Double-click the Uncertain State Space block, and enter struct( 'a', -0.3) in the Uncertainty value field.

Uncertain system variable (uss):

\section*{unc_sys}

Uncertainty value (struct or [] to use nominal value):
struct('a',-0.3)
b Click
to simulate the model.
The MultiPlot Graph shows the following responses, corresponding to the nominal and manually-defined values of a.


5 Pick a random value of a in its uncertainty range. To do so, double-click the Uncertain State Space block, and type usample (ufind(unc_sys)) in the Uncertainty value field.

\section*{Uncertain system variable (uss):}

\section*{unc_sys}

Uncertainty value (struct or [] to use nominal value):
```

usample(ufind(unc_sys))

```

6 Analyze the uncertainty effects by simulating the model ten times using the following commands:
```

for i=1:10;
sim('rct_sim_ex1',10);
end

```

During simulation, the software samples the uncertain variable a in its uncertainty range \([-2-0.5]\) and shows the simulated response for each sample value. The plots cycle through seven different colors, and the last response appears in red.


Tip: You can clear the plots in the MultiPlot Graph block before you run the simulation.

\section*{See Also}

MultiPlot Graph | Uncertain State Space

\section*{Related Examples}
- "Vary Uncertainty Values Across Multiple Uncertain State Space Blocks" on page 5-15

\section*{Vary Uncertainty Values Across Multiple Uncertain State Space Blocks}

This example shows the workflow for varying uncertainty values across multiple Uncertain State Space blocks in a Simulink model. Use this approach for complex models with large number of uncertain variables or Uncertain State Space blocks.

This section uses a Simulink model to provide step-by-step instructions for toggling between nominal and user-defined uncertainty values at the MATLAB prompt.

1 Open the Simulink model rct_sim_ex2.
rct_sim_ex2
The model contains two Uncertain State Space blocks, as shown in the following figure.


The Unmodeled dynamics and First order with uncertain pole blocks depend on the uncertain variables input_unc and a.
2 Double-click the Unmodeled dynamics block to open the block parameters dialog box. The Uncertainty value field contains the variable val_all. Similarly, the Uncertainty value field in the First order with uncertain pole block parameters dialog contains the variable val_all. You use this variable to vary the uncertain variable values across both the Uncertain State Space blocks.

\section*{Uncertain system variable (uss):}

\section*{wt*input_und}

Uncertainty value (struct or [] to use nominal value):
val_all

Note When defining val_all, you can enter only a subset of uncertain variables referenced by the model in the structure. When you do not specify some uncertain variables, the software uses their nominal value during simulation.

\section*{3 At the MATLAB prompt, specify val_all = [ ] ; and click}
to simulate the model.
The software uses the nominal values of the uncertain variables a and input_unc during simulation. After the simulation completes, the MultiPlot Graph block shows the following figure.


4 Generate random samples of uncertainty values:
a Find all Uncertain State Space blocks and associated uncertain variables in the model.
```

uvars=ufind('rct_sim_ex2')

```

MATLAB returns the following result:
uvars =
```

 a: [1x1 ureal]
 input_unc: [1x1 ultidyn]
    ```

The uncertain variables a and input_unc are ureal and ultidyn objects, respectively and the structure uvars lists them by name.
b Randomly sample the uncertain variables.
```

val_all = usample(uvars)

```

MATLAB returns the following result:
```

val_all =
a: -1.1167
input_unc: [1x1 ss]

```

The structure val_all contains sample values of the uncertain variables a and input_unc. The software samples the values within the specified uncertainty ranges for a and input_unc.
5 Simulate the model for the uncertainty values val_all. By repeating the process inside a for-loop, you can assess how uncertainty affects the model responses. For example, perform 10 simulations using random uncertainty values:
```

for i=1:10;
val_all = usample(uvars)
sim('rct_sim_ex2',10);
end

```

During each simulation, the software samples values of the uncertain variables input_unc and a and plots the response for the sampled values. The MultiPlot Graph block shows the following responses obtained using random sample values of uncertain variables.


\section*{Compute Uncertain State-Space Models from Simulink Models}

When you have the Simulink Control Design software, you can compute an uncertain linearization, i.e., an uncertain state-space model (uss) combining the uncertain variables with linearized dynamics. Use the uss model to perform linear analysis and robust control design.

You can compute an uncertain linearization in one of the following ways:
- Using the ulinearize command, as described in "Obtain Uncertain State-Space Model from Simulink Model" on page 5-20.
- Using the Simulink Control Design linearize command, as described in "Specify Uncertain Linearization for Core or Custom Simulink Blocks" on page 5-21.

\section*{Obtain Uncertain State-Space Model from Simulink Model}

To obtain an uncertain state-space model from a model that contains Uncertain State Space blocks, use the following steps:

Note If you do not have Uncertain State Space blocks in the model but still want to obtain an uncertain state-space model, see "Specify Uncertain Linearization for Core or Custom Simulink Blocks" on page 5-21.

1 (Prerequisite) Create or open the Simulink model.
2 (Prerequisite) In the Simulink model, specify the linearization input and output points using Simulink Control Design getlinio or linio commands. For more information, see "Specify Portion of Model to Linearize" (Simulink Control Design) in the Simulink Control Design documentation.
3 (Prerequisite) If you have not already done so, specify uncertainty in the Simulink model as described in "Specify Uncertainty Using Uncertain State Space Blocks" on page 5-4.

Note The software does not evaluate the uncertain variables during linearization. Thus, the value of the uncertainty does not affect the linearization.

4 Run ulinearize to compute an uncertain linearization. This command returns an uss model.

> \begin{tabular}{l} \hline Note If you use the Simulink Control Designlinearize command, the Uncertain \\ State Space blocks linearize to their nominal value. \end{tabular}

For more information on linearization and how to evaluate the results, see "Linearization Basics" (Simulink Control Design) in the Simulink Control Design documentation.

For an example of how to use the Simulink Control Design linearize command, see "Linearization of Simulink Models with Uncertainty".

\section*{Specify Uncertain Linearization for Core or Custom Simulink Blocks}

In some cases, you cannot use Uncertain State Space blocks in the Simulink model because you share the model or generate code. You can still account for uncertainty in your linear analysis without specifying uncertainty using Uncertain State Space blocks. Robust Control Toolbox lets you specify a core or custom Simulink block to linearize to an uncertain variable. The linearization produces an uncertain state-space uss model. The specified uncertainty associates only with the block and does not affect the model simulation. For more information, see "Specify Linear System for Block Linearization Using MATLAB Expression" (Simulink Control Design) in the Simulink Control Design documentation.

Note If you have Uncertain State Space blocks in the model and want to obtain an uncertain state-space model, see "Obtain Uncertain State-Space Model from Simulink Model" on page 5-20.

To specify blocks to linearize to uncertain variables and obtain an uncertain state-space model:

1 (Prerequisites) Create or open the Simulink model. Specify linearization input and output points using the Simulink Control Design getlinio or linio commands.

For this example, you can open the model rct_ulinearize_builtin.
2 Specify a block to linearize to an uncertain variable:
a Right-click the block and select Linear Analysis > Specify Selected Block Linearization.


This action opens the Block Linearization Specification dialog box.

Block Linearization Specification - Plant
Specify block linearization using one of the following: MATLAB Expression
Enter an expression to specify the linearization of the Simulink block.
```

plant * (1 + wt * input_unc)

```

OK
Cancel
Help
Apply
b In the Block Linearization Specification dialog box, select the Specify block linearization using one of the following: check box. Selecting this check box lets you to specify an uncertain variable for linearization.

This check box defaults to MATLAB Expression in the drop-down menu. This option lets you specify the block to linearize to an uncertain variable using a MATLAB expression containing Robust Control Toolbox functions. To learn more about the options, see "Specify Linear System for Block Linearization Using MATLAB Expression" (Simulink Control Design) in the Simulink Control Design documentation.
c In the Enter an expression to specify the linearization of the Simulink block field, enter an expression, which must evaluate to an uncertain variable or uncertain model, such as ureal, umat, ultidyn or uss.

d Click OK to save the changes.

Note You can also specify a block to linearize to an uncertain variable at the command line. For an example, see "Linearize Block to Uncertain Model" on page 5-25.
3 Run the linearize command to compute an uncertain linearization. This command returns an uss model.

For more information on linearization and how to validate linearization results, see "Linearization Basics" (Simulink Control Design) in the Simulink Control Design documentation.

For an example of how to use the linearize command to compute an uncertain linearization, see "Linearization of Simulink Models with Uncertainty".

\section*{Using Uncertain Linearization for Analysis or Control Design}

After computing an uncertain linearization, you can perform any analysis or design tasks you would perform on any linear model, including:
- Perform robustness analysis. See "Robustness and Worst-Case Analysis".
- Perform robust control design. See "Robust Tuning".

\section*{See Also}
linearize | ulinearize

\section*{Related Examples}
- "Linearization of Simulink Models with Uncertainty"
- "Linearize Block to Uncertain Model" on page 5-25

\section*{Linearize Block to Uncertain Model}

This example shows how to make a Simulink \({ }^{\circledR}\) block linearize to an uncertain variable at the command line. To learn how to specify an uncertain block linearization using the Simulink model editor, see "Specify Uncertain Linearization for Core or Custom Simulink Blocks".

For this example, open the Simulink model slexAircraftExample.
```

mdl = 'slexAircraftExample';
open_system(mdl)

```

Aircraft Longitudinal Flight Control


Copyright 2012-2015 The MathWorks, Inc.


Examine the subsystem Aircraft Dynamics Model.
```

subsys = [mdl,'/Aircraft Dynamics Model'];

```
open_system(subsys)


Suppose you want to specify the following uncertain real values for the gain blocks Mw and Zd.

Mw_unc = ureal('Mw', -0.00592,'Percentage',50);
Zd_unc = ureal('Zd',-63.9979,'Percentage',30);
To specify these values as the linearization for these blocks, create a BlockSubs structure to pass to the linearize function. The field names are the names of the Simulink blocks, and the values are the corresponding uncertain values. Note that in this model, the name of the Mw block is Gain4, and the name of the Zd block is Gain5.
```

Mw_name = [subsys,'/Gain4'];
Zd_name = [subsys,'/Gain5'];

```

BlockSubs(1). Name = Mw_name;
BlockSubs(1).Value = Mw_unc;
```

BlockSubs(2).Name = Zd name;
BlockSubs(2).Value = Zd_unc;

```

Compute the uncertain linearization. linearize linearizes the model at operating point specified in the model, making the substitutions specified by BlockSubs. The result is an uncertain state-space model with an uncertain real parameter for each of the two uncertain gains.
```

sys = linearize(mdl,BlockSubs)
sys =
Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 7 states.
The model uncertainty consists of the following blocks:
Mw: Uncertain real, nominal = -0.00592, variability = [-50,50]%, 1 occurrences
Zd: Uncertain real, nominal = -64, variability = [-30,30]%, 1 occurrences
Type "sys.NominalValue" to see the nominal value, "get(sys)" to see all properties, an

```


Examine the undertain model response.
```

step(sys)

```

\section*{Step Response}

step takes random samples and provides a sense of the range of responses within the uncertainty of the linearized model.

\section*{See Also}
linearize

\section*{Related Examples}
- "Specify Uncertain Linearization for Core or Custom Simulink Blocks" on page 5-21
- "Obtain Uncertain State-Space Model from Simulink Model" on page 5-20

\section*{Analyzing Stability Margin of Simulink Models}

Robust Control Toolbox provides the loopmargin command to analyze the stability margins of LTI models created in MATLAB and Simulink models. To use loopmargin with Simulink models, you must have the Simulink Control Design software. This section describes the difference between the MATLAB and Simulink approaches of using loopmargin and the workflow for computing the stability margin of Simulinkmodels. For more information on how to analyze the stability margins of LTI models, see "MIMO Robustness Analysis".

\section*{How Stability Margin Analysis Using Loopmargin Differs Between Simulink and LTI Models}

When analyzing stability margins of LTI models using the syntax [ \(\mathrm{cm}, \mathrm{dm}, \mathrm{mm}\) ] = loopmargin ( \(\mathrm{P}, \mathrm{C}\) ), the software assumes the input and output of the linear plant P as the margin analysis points, as shown in the following figure.


Analyzing stability margin of Simulink models differs from analyzing stability margin of LTI models because you can enter specific margin analysis points in the Simulink model. For more information on how to assign margin analysis points in Simulink models, see the "Usage with Simulink" section of the loopmargin reference page.

\section*{Stability Margin of Simulink Model}

The loopmargin command computes the following types of stability margins:
- Loop-at-a-time classical gain and phase margins
- Loop-at-a-time disk margins
- Multi-loop disk margin

To learn more about these stability margins, see the "Algorithms" section of the loopmargin reference page.

The loopmargin command computes the stability margin based on linearization of Simulink models. To compute stability margins of a Simulink model:

1 Specify the block where you want to define a margin analysis point.
2 Specify the output port of the block where you want the margin analysis point.
The software performs the analysis by opening the loop at all specified margin analysis point.
3 Use the loopmargin command to compute the stability margins at the margin analysis point.

Optionally, you can compare the classical gain and phase margins obtained using loopmargin with the stability margins computed for the linearized model. The results using the two approaches should match for simple SISO models. For MIMO models, the loopmargin command provides richer robustness information. For an example, see "Stability Margin of a Simulink Model" on page 5-33.

Additionally, you can compute stability margins by specifying multiple margin analysis points and multiple operating points. For an example, see "Loop Margins for an Airframe Autopilot".

\section*{Stability Margin of a Simulink Model}

This example illustrates how to compute the stability margins of the airframemargin model and compare the results with stability margins computed using the linearized model.

1 Open the Simulink model:
airframemargin

\section*{Tuning of Airframe Autopilot Gains}


2 Define a margin analysis point at the output of the Airframe Model block.
block1 = 'airframemargin/Airframe Model';
3 Specify the output az of the Airframe Model block as a margin analysis point.
port1 = 1;
4 Compute stability margins.
[cm,dm,mm] = loopmargin('airframemargin',block1,port1);
5 View the classical gain and phase margins.
cm
cm \(=\)
```

 GainMargin: [4.5652 2.5055e+003]
 GMFrequency: [7.1979 314.1593]
PhaseMargin: 65.1907
PMFrequency: 2.1463
DelayMargin: 53.0113
DMFrequency: 2.1463
Stable: 1

```

6 Compare the classical gain and phase margins cm with stability margins of the linearized model computed using allmargin:
```

% Define linearization I/O points.
io = linio('airframemargin/Airframe Model',1,'looptransfer');
% Linearize the model.
lin_sys = linearize('airframemargin',io);
% Compute gain and phase margins.
cm_lin = allmargin(-lin_sys)
cm_lin =
GainMargin: [4.5652 2.5055e+003]
GMFrequency: [7.1979 314.1593]
PhaseMargin: 65.1907
PMFrequency: 2.1463
DelayMargin: 53.0113
DMFrequency: 2.1463
Stable: 1

```

The gain and phase margins, cm and cm_lin, computed using the two approaches match.```

